

United States Environmental Protection Agency Washington, DC 20460

Completion Form For Injection Wells						
	Administrative Information					
1. Permittee						
Address (Permanent Mailing Address) (Street, City, and ZIP	Code)					
2. Operator						
Address (Street, City, State and ZIP Code)						
3. Facility Name		Telephone Number				
Address (Street, City, State and ZIP Code)						
4. Surface Location Description of Injection Well(s)						
State	County					
Surface Location Description 1/4 of 1/4 of _NW 1/4 of 1/4 of Section	Township Range					
Locate well in two directions from nearest lines of quarter se Surface Location 1115 ft. frm (N/S) Line of quarter section and 1073 ft. from (E/W) Line of quarter section.	ction and drilling unit					
· · · · · · · · · · · · · · · · · · ·	Well Status	Tune of Dormit				
Well Activity	well Status	Type of Permit				
Class I	Operating	Individual				
Class II	Modification/Conversion	Area : Nun	nber of Wells			
Brine Disposal	Proposed					
Enhanced Recovery	<u> </u>					
Hydrocarbon Storage						
Class III						
Other						
Lease Number	Well Number					
Submit with this Completion Form	the attachments listed in A	Attachments for Completion F	orm.			
Certification						
I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment (Ref. 40 CFR 144.32)						
Name and Official Title (Please type or print)	Signature		Date Signed			

PAPERWORK REDUCTION ACT

The public reporting and record keeping burden for this collection of information is estimated to average 49 hours per response for a Class I hazardous facility, and 47 hours per response for a Class I non-hazardous facility. Burden means the total time, effort, or financial resource expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal Agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to the collection of information; search data sources; complete and review the collection of information; and, transmit or otherwise disclose the information. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including the use of automated collection techniques to Director, Collection Strategies Division, U.S. Environmental Protection Agency (2822), 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Include the OMB control number in any correspondence. Do not send the completed forms to this address.

Attachments to be submitted with the Completion report:

I. Geologic Information

- 1. Lithology and Stratigraphy
- A. Provide a geologic description of the rock units penetrated by name, age, depth, thickness, and lithology of each rock unit penetrated.
- B. Provide a description of the injection unit.
- (1) Name
- (2) Depth (drilled)
- (3) Thickness
- (4) Formation fluid pressure
- (5) Age of unit
- (6) Porosity (avg.)
- (7) Permeability
- (8) Bottom hole temperature
- (9) Lithology
- (10) Bottom hold pressure
- (11) Fracture pressure
- C. Provide chemical characteristics of formation fluid (attach chemical analysis).
- D. Provide a description of freshwater aquifers.
- (1) Depth to base of fresh water (less than 10,000 mg/l TDS).
- (2) Provide a geologic description of aquifer units with name, age, depth, thickness, lithology, and average total dissolved solids.

II. Well Design and Construction

- 1. Provide data on surface, intermediate, and long string casing and tubing. Data must include material, size, weight, grade, and depth set.
- 2. Provide data on the well cement, such as type/class, additives, amount, and method of emplacement.
- 3. Provide packer data on the packer (if used) such as type, name and model, setting depth, and type of annular fluid used.

- 4. Provide data on centralizers to include number, type and depth.
- 5. Provide data on bottom hole completions.
- 6. Provide data on well stimulation used.

III. Description of Surface Equipment

1. Provide data and a sketch of holding tanks, flow lines, filters, and injection pump.

IV. Monitoring Systems

- 1. Provide data on recording and nonrecording injection pressure gauges, casing-tubing annulus pressure gauges, injection rate meters, temperature meters, and other meters or gauges.
- 2. Provide data on constructed monitor wells such as location, depth, casing diameter, method of cementing, etc.

V. Logging and Testing Results

Provide a descriptive report interpreting the results of geophysical logs and other tests. Include a description and data on deviation checks run during drilling.

- **VI.** Provide an as-built diagrammatic sketch of the injection well(s) showing casing, cement, tubing, packer, etc., with proper setting depths. The sketch should include well head and gauges.
- **VII.** Provide data demonstrating mechanical integrity pursuant to 40 CFR 146.08.
- **VIII.** Report on the compatibility of injected wastes with fluids and minerals in both the injection zone and the confining zone.
- **IX.** Report the status of corrective action on defective wells in the area of review.
- **X.** Include the anticipated maximum pressure and flow rate at which injection will operate.

HALEY & ALDRICH, INC. One Arizona Center 400 E. Van Buren St., Suite 545 Phoenix, AZ 85004 602.760.2450

TECHNICAL MEMORANDUM

22 May 2019 File No. 129687-012

TO: Florence Copper Inc.

Ian Ream, Senior Hydrogeologist

FROM: Haley & Aldrich, Inc.

Mark Nicholls, R.G.

SUBJECT: Drilling, Installation, and Integrity Testing Summary

PTF Supplemental Monitoring Well M57R-O

Florence Copper Inc., Florence, Arizona

This document summarizes the drilling, installation, and testing of Production Test Facility (PTF) supplemental monitoring well M57R-O for Florence Copper Inc. (Florence Copper) in Florence, Arizona. This includes the equipment used to perform the work, completion, and the results of well testing activities. Separate well completion reports have been created for each PTF well.

The Arizona Department of Water Resources Registry ID for well M57R-O is 55-229751; the Well Registry Report is included in Appendix A. Well M57R-O is located in the southeast quarter of the northwest quarter of the southwest quarter of Section 28 of Township 4 north, Range 9 East of the Gila and Salt River Baseline and Meridian (D(4-9)28CBD). Well M57R-O is located within the Underground Injection Control (UIC) Permitted Area of Review (AOR) for UIC Permit R9UIC-AZ3-FY11-1 and was completed as a Class IN supplemental monitoring well for the PTF (Figure 1).

Florence Copper contracted Stewart Brothers Drilling Company (Stewart Brothers) to drill, install, and test well M57R-O in accordance with *Bid Specification: Installation of Class III Monitoring Wells, Production Test Facility, Florence, Arizona* (Haley & Aldrich, Inc. [Haley & Aldrich], 2015). Haley & Aldrich provided oversight of drilling activities on-call as needed and provided full-time oversight during key activities such as geophysical logging, well installation, and testing. All reported depths are in feet below ground surface unless otherwise noted.

I. Geologic Information

- 1. Lithology and Stratigraphy
 - A. Geology of Penetrated Units

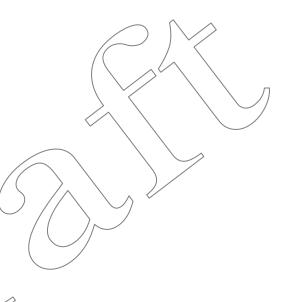
The geology penetrated during the drilling of the Class III well M57R-O is summarized below; a lithologic log is included in Appendix B.

Lithologic Unit Name	Depth to Bottom of Unit (feet)	Thickness of Unit (feet)	Lithology and Age of Unit
Upper Basin Fill Unit (UBFU)	279	279	Alluvium; Quaternary to Tertiary
Middle Fine-Grained Unit (MFGU)	300	21	Alluvium; Tertiary
Lower Basin Fill Unit (LBFU)	485	185	Alluvium; Tertiary to Cretaceous
Bedrock Oxide Unit (Oxide)	Not encountered	>715	Igneous porphyry; Precambrian

B. Description of Injection Unit

Name	Bedrock Oxide Unit
Depth Drilled	1,210 feet
Thickness	>715 feet
Formation Fluid Pressure	Atmospheric plus head of freshwater; no additional formation pressure
Age of Unit	Precambrian with intrusions of Precambrian to Tertiary rocks
Porosity ¹	Approximately 6 to 8.5%
Permeability	Hydraulic conductivity = 0.56 feet per day
Bottom Hole Temperature	30.7 degrees Celsius
Lithology	Igneous porphyry: quartz monzonite, granodiorite with diabase and andesite dykes (detailed log included in Appendix B)
Bottom Hole Pressure	Approximately 430 pounds per square inch (PSI) (pressure exerted by the column of freshwater with no additional contribution from formation pressure)
Fracture Pressure	Q.65 PSI per foot
Notes:	k ovide unit are approximate values from calculated neutron porosity values from

¹ Porosity values for the bedrock oxide unit are approximate values from calculated neutron porosity values from injection well borehole surveys.


C. Chemical Characteristics of Formation Fluid

The chemical characteristics of the formation fluid in the injection zone are summarized below based on sampling results from a sample collected at well M57R-O. The table below summarizes the primary chemical characteristics detected in a formation fluid sample collected on 26 April 2019; the complete analytical report is included in Appendix C.

Analyte	Result (mg/L)
Metals	
Aluminum	<0.040
Antimony	0.0056
Arsenic	0.0057
Barium	0.024
Beryllium	<0.00025
Cadmium	<0.00025
Calcium	49
Chromium	0.0026

Analyte	Result (mg/L)
Cobalt	0.00048
Copper	0.0094
Iron	<0.30
Lead	<0.0005
Magnesium	12
Manganese	0.082
Mercury	<0.001
Nickel	0.0030
Potassium	7.1
Selenium	<0.0041
Sodium	210
Thallium	<0.0005
Zinc	<0.04
Anions	
Bicarbonate	220
Chloride	200
Fluoride	1.0
Nitrate	2.8
Sulfate	180
Field Parameters	
Total Dissolved Solids	900
рН	8.0
Radiochemicals	
Uranium	ø.019 (
Notes:	$\langle \langle \langle \rangle \rangle$
mg/L = milligrams per liter	$\overline{}$

- D. Description of Freshwater Aquifers
 - 1) The depth to the base of the freshwater aquifer is defined by the interface where deeper formation fluid exhibits a total dissolved solids (TDS) value of 10,000 milligrams per liter (mg/L). The depth of the 10,000 mg/L interface is deeper than all of the wells drilled at the site and consequently has not been defined.
 - 2) A geologic description of the aquifer units is included below:

Aquifer Unit Name	Age	Depth (feet)	Thickness (feet)	Lithology	Average Total Dissolved Solids ¹ (mg/L)
UBFU	Quaternary/Tertiary	0 to 279	279	Alluvium	914
LBFU	Tertiary	300 to 485	185	Alluvium	754

Notes:

 $^{^{1}}$ Average TDS values calculated from UBFU and LBFU monitoring well ambient monitoring results near the PTF.

II. Well Design and Construction

1. Well M57R-O Casing Installed

Casing	Material	Diameter (inches)	Weight (pounds per foot)	Depth (feet)	Borehole Diameter (inches)	Drilling Method
Surface	Mild steel	14 O.D. 13% I.D.	47.36	0 to 40	17½	Conventional mud rotary
Well casing	Mild steel	5.66 O.D. 5.14 I.D.	5.40	-2.1 to 550	105/8	Conventional mud rotary
Screen	PVC Sch. 80 with 0.020-inch wide slots	5.56 O.D. 4.81 I.D.	4.08	550 to 1,200	105/8	Conventional mud rotary

Notes:

I.D. = inside diameter

 $O.D. = outside\ diameter$

PVC = polyvinyl chloride

Sch. = Schedule

2. Well Cement

Cement Interval	Cement Type	Additives	Amount Installed (cubic yards)	Method of Emplacement
Surface casing	Type V Neat 21 sack slurry	None	1	Submerged tremie
Well casing	Type V Neat 21 sack slurry	None	16	Submerged tremie

Field forms documenting pipe tallies, annular materials, and cement tickets are included in Appendix D.

3. Annular Packers

No annular packers were used during construction of well M57R-O.

4. Centralizers

Casing	Centralizer Type	Number and Spacing
Well – FRP and PVC	Stainless steel – heavy duty	28 installed – every 40 feet
Notes: FRP = fiberglass reinforced plastic		

PVC = polyvinyl chloride

5. Bottom Hole Completion

There is no bottom hole completion, as this is not an oil/gas well. The well was completed at the bottom with a stainless-steel endcap of the same diameter as the well screen.

6. Well Stimulation

No well stimulation was used during the drilling and construction of well M57R-O.

III. Description of Surface Equipment

1. Surface Equipment

Well M57R-O is a supplemental monitoring well and has been equipped with a pressure transducer for monitoring water levels and a low-flow pump for collecting water quality samples. There is no surface equipment beyond the well casing stick-up and locking well vault. An as-built diagram of the well is included as Figure 2.

IV. Monitoring Systems

1. Well Monitoring Equipment

Well M57R-O is a monitoring well and does not have any monitoring systems for injection. A pressure transducer with a data logger is installed in the well to collect water levels for compliance reporting.

2. Monitoring Wells

A total of 16 monitoring wells (including well M57R-O) are associated with the PTF: 7 point of compliance (POC) wells, 7 United States Environmental Protection Agency (USEPA) supplemental monitoring wells, and 2 operational monitoring wells. The POC wells are located outside the AOR and are not constructed as Class III wells. The supplemental monitoring and operational monitoring wells are located within the AOR and are constructed as Class III wells as required by the UIC Permit.

The wells are summarized in the tables below by type.

Well ID	Location X/Y (State Plane NAD 83)	Depth (feet)	Well Nom. Diameter (inches)	Cementing Method	Screened Interval (feet)	Screened Lithologic Unit
M14-GL	846750.23 746461.52	859	5 9/16 OD	Submerged tremie	778 to 838	LBFU
M15-GU	846697.17 746464.82	615	5 9/16 OD	Submerged tremie	554 to 594	LBFU

	POC Wells								
Well ID	Location X/Y (State Plane NAD 83)	Depth (feet)	Well No Diameto (inches	er	Cementing Method	Screened Interval (feet)	Screened Lithologic Unit		
M22-O	846751.26 746514.47	1,140	5 9/16 OE 528 fee 4½ OD t 1,140 fe	t; o	Submerged tremie	932 to 1,130	Oxide		
M23-UBF	846688.13 746512.48	250	6% OD		Submerged tremie	210 to 250	UBFU		
M52-UBF	851092.00 774178.00	274	5 9/16		Submerged tremie	198 to 273	UBFU		
M54-LBF	847331.96 746682.61	630	5 9/16		Submerged tremie	310 to 629	LBFU		
M54-O	847342.99 746702.36	1,199	5 9/16		Submerged tremie	668 to 1,198	Oxide		
Notes: LBFU = Lower Basin Fill Unit OD = outside diameter					3 = North American = Upper Basin Fill U	\			

		Supplem	ental Monito	oring Wells		
Well ID	Location X/Y (State Plane NAD 83)	Depth (feet)	Well Nom. Diameter (inches)	Cementing Method	Screened Interval (feet)	Screened Lithologic Unit
M55-UBF	847541.46 746 280.63	261	5	Submerged tremie	240 to 260	UBFU
M56-LBF	847518.70 746303.41	340	5	Submerged tremie	320 to 340	LBFU
M57R-0	847429.7746131.4	1,200	5	Submerged tremie	550 to 1,200	Oxide
M58-O	847672.23 746595.97	/1,200	5	Submerged tremie	594 to 1,199	Oxide
M59-0	847934.95 746218.89	1,201	5	Submerged tremie	534 to 1,199	Oxide
M60-O	847599.37 745903.70	1,201	5	Submerged tremie	444 to 1,200	Oxide
M61-LBF	848184.46 746148.88	629	5	Submerged tremie	429 to 629	LBFU
Notes: LBFU = Lower Basin Fill Unit NAD 83 = North American Datum of 1983			UBF	U = Upper Basin Fill	Unit	

	Operational Monitoring Wells									
Well ID	Location X/Y (State Plane NAD 83)	Depth (feet)	Well Nom. Diameter (inches)	Cementing Method	Screened Interval	Screened Lithologic Unit				
MW-01-LBF	847487.97 746360.54	444	5	Submerged tremie	330 to 440	LBFU				
MW-01-0	847499.04 746369.31	1,200	5	Submerged tremie	500 to 1,200	Oxide				

Notes:

LBFU = Lower Basin Fill Unit

NAD 83 = North American Datum of 1983

V. Logging and Testing Results

Borehole geophysical logging was conducted on well M57R-O in two phases: 1) open-hole surveys in the 12.25-inch borehole prior to installation of the well casing and screen, and 2) cased-hole surveys in the completed well.

The open-hole geophysical surveys completed at well M57R-Q included:

- Spontaneous potential;
- Natural gamma;
- Electrical resistivity (short and long normal);
- Caliper with calculated volume;
- Temperature;
- Sonic; and
- Deviation.

The cased-hole geophysical surveys completed included:

- Cement bond log;
- Sonic (for cement evaluation);
- 4 pi density (for cement evaluation);
- Dual density (for cement evaluation);
- Natural gamma;
- Fluid conductivity; and
- Temperature.

Florence Copper Inc. 22 May 2019 Page 8

Open-hole geophysical surveys were used to support identification of the lithologic contacts, to evaluate the condition of the borehole, and to evaluate the deviation of the borehole.

The primary logs used to evaluate lithologic contacts were natural gamma ray, short (16-inch) and long (64-inch) normal electrical resistance, and single-point resistance.

The lithologic contacts for the Middle Fine-Grained Unit (MFGU) were selected based on the short and long resistance and the single-point resistance. All the resistivity values decreased and remained consistently low through the MFGU. This contact is generally characterized by a relatively sharp decrease in resistance at the top of the unit and a gradual increase in resistance below the bottom of the unit.

The contact between the Lower Basin Fill Unit (LBFU) and the bedrock was identified primarily using the natural gamma and correlated with the resistance logs. There is a consistent increase in gamma values at the contact between the LBFU and the bedrock that was identified and documented at the site during exploration in the 1990s. For well M57R-O, the gamma values are consistent at approximately 90 American Petroleum Institute (API) units throughout the Upper Basin Fill Unit (UBFU), increase slightly to approximately 100 API units in the MFGU through the LBFU, and increase starting at 450 feet to over 200 API units. After the increase at approximately 450 feet, the natural gamma values begin to vary more than in the alluvial units. Electrical resistance shifts at approximately 485 feet, likely because the bedrock contains less water, leading to increased resistivity. The observed changes in the response of the natural gamma and electrical resistivity were used to determine the contact with the bedrock unit.

Cased-hole geophysical surveys were conducted to evaluate the cement seal and the casing cement bond, to document baseline fluid temperature and conductivity, and to evaluate the plumbness of the well. The cement bond is discussed in Section VII.

Copies of all the geophysical logs are included in Appendix E; a figure summarizing the open-hole logs used to evaluate the geology is included as Figure 3.

VI. Well As-Built Diagram

An as-built diagram for well M57R-O is included as Figure 2.

VII. Demonstration of Mechanical Integrity

A demonstration of Part I mechanical integrity of the well has not yet been completed.

Part II mechanical integrity is demonstrated by the cementing records included in this report (in accordance with Part II.E.3.ii.C of the UIC Permit) and will be demonstrated during operations by annular

Florence Copper Inc. 22 May 2019 Page 9

conductivity monitoring on the observation and multi-level sampling wells (in accordance with Part II.E.3.a.ii.A of the UIC Permit).

Cemented Interval	Cement Type	Calculated Grout Volume (cubic yards)	Installed Grout Volume (cubic yards)
Well casing	Type V 21 sack neat cement slurry	11.2	16.0

On 28 March 2019, a cement bond log was run over the entire length of the completed well to verify the grout seal. A summary of the logs completed to demonstrate cement bond are included in Appendix G.

The cement bond of the steel casing at well M57R-O was evaluated by the geophysical contractor by running a cement bond log and calculating a bond index. The bond index was calculated to be greater than 90 percent over the cement grouted interval from approximately 240 feet (static water level) to 533 feet. In addition to the cement bond, density data was collected to evaluate the unsaturated interval; the density data indicate that there are no significant cement deficiencies at well M57R-O in the cement interval. The data is included on the summary log in Appendix G.

VIII. Compatibility of Injected Waste

The Florence Copper Project is a Class III mineral extraction project and does not include the injection of any waste products of any kind. The injected fluid (lixiviant) is a carefully constituted in-situ copper recovery solution that will be recovered and recycled following injection.

The compatibility of the lixiviant was evaluated as part of the geochemical modeling completed by Florence Copper and summarized in the *Geochemical Evaluation to Forecast Composition of Process Solutions for In-Situ Copper Recovery Pilot Test Facility at Florence Copper, Florence Arizona* (Daniel B. Stephens Inc., 2014) which was included in Attachment H of the UIC Permit Application.

IX. Status of Corrective Action on Defective Wells in the Area of Review

There are not currently any defective wells in the AOR.

X. Maximum Pressures and Flow Rates for M57R-O

Maximum Operating Pressure	Maximum Flow
Atmospheric	Not applicable – monitoring well

This well is a monitoring well used to monitor water quality downgradient of the PTF. No fluids will be injected.

XI. Well Development

Well M57R-O was developed by pumping; development was completed by Stewart Brothers. On 14 March 2019, a submersible pump was temporarily installed to approximately 1,000 feet to pump develop the well. Pump development was conducted at approximately 20 gallons per minute over a period of 2 days (14 to 15 March), and periodically turned off to surge the well. Well development forms are included in Appendix H.

XII. Well Completion

A well video survey was conducted on 1 April 2019; the video log report is included in Appendix I. The video log depths are presented in feet below the top of the casing and thus vary slightly from what is recorded; however, these values are the same with the correction for stick-up.

The surveyed location for well M57R-O is as follows:

Northing (feet)	Easting (feet)	Measuring Point Elevation (feet amsl)
746131.4	847429.7	NA //

Notes:

Northing and easting locations provided in State Plane North American Datum 1983; vertical location provided in North American Vertical Datum 1988. amsl = above mean sea level

XIII. Downhole Equipment

Permanent equipment installed in well M57R-O includes the following:

- QED® low-flow sampling pump hung on drop tubing (pump at 950 feet); and
- Pressure transducer.

The type and depth of equipment installed in each well is not constrained by the UIC Permit or the Aquifer Protection Permit (APP). This information is provided in accordance with Section 2.7.4.3 of the APP. Operational considerations may require that the type and depth of equipment be changed in response to conditions observed during operations.

XIV. References

Brown and Caldwell, Inc., 2018. *Procedures for Determining Alert Levels and Aquifer Quality Limits for Groundwater Compliance Monitoring, Florence Copper Project, Florence, Arizona*. June.

Daniel B. Stephens, Inc., 2014. *Geochemical Evaluation to Forecast Composition of Process Solutions for In-Situ Copper Recovery Pilot Test Facility at Florence Copper, Florence Arizona.* Prepared for Florence Copper. May.

Haley & Aldrich, Inc., 2017. *Bid Specification: Installation of Class III Monitoring Wells, Production Test Facility, Florence, Arizona*. Revised September.

Enclosures:

Figure 1 – Well Locations

Figure 2 – M57R-O Supplemental Monitoring Well As-Built Diagram

Figure 3 – Geophysical Data and Lithologic Log

Appendix A – Arizona Department of Water Resources Well Registry Report

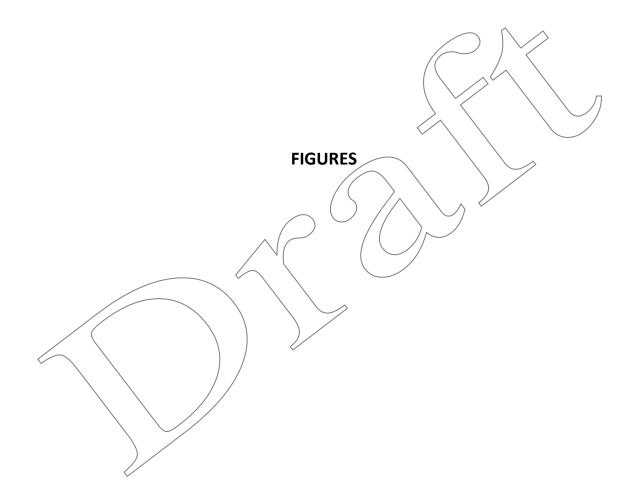
Appendix B – Lithologic Log

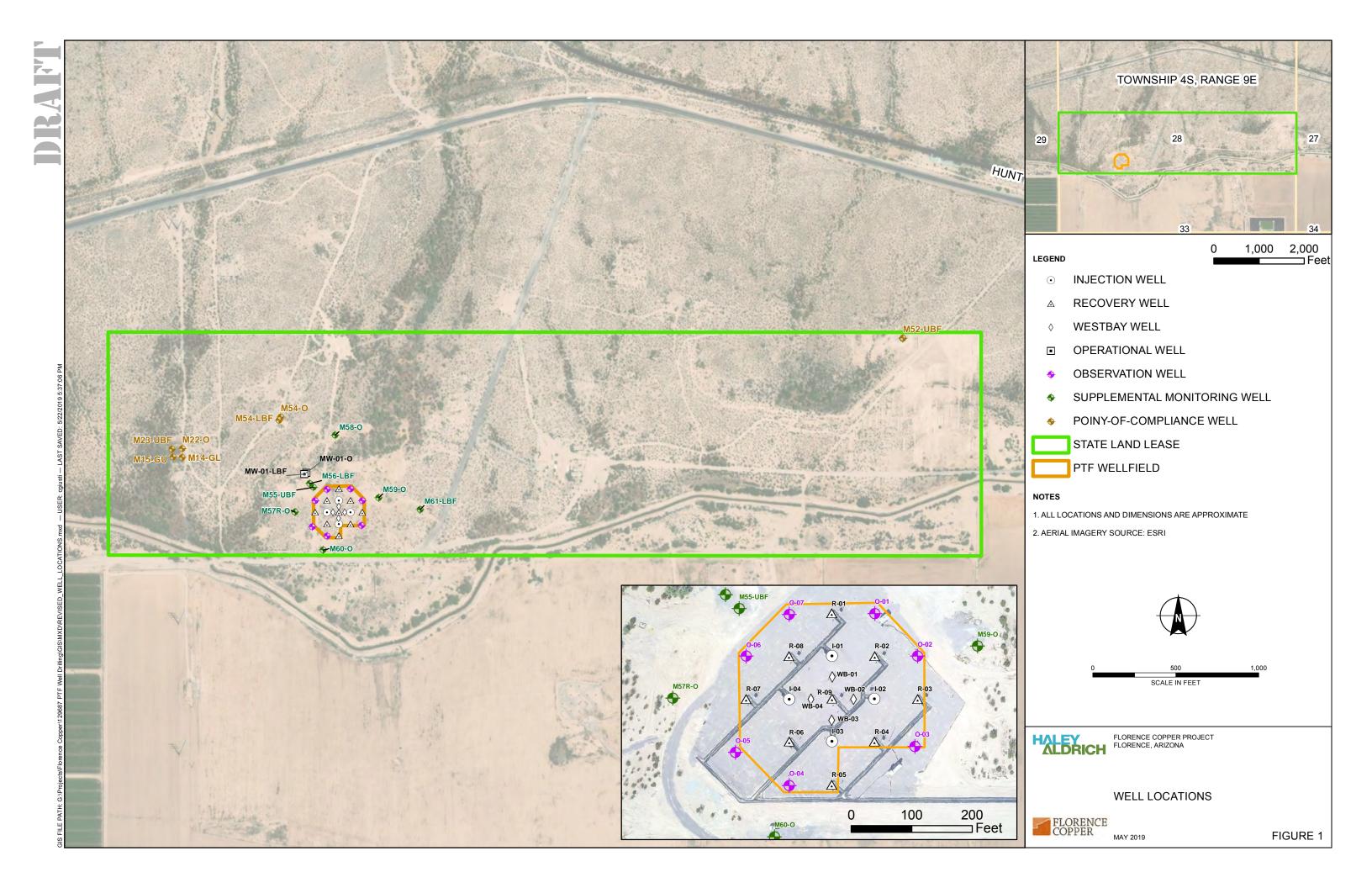
Appendix C – Chemical Characteristics of Formation/Water

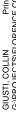
Appendix D - Well Completion Documentation

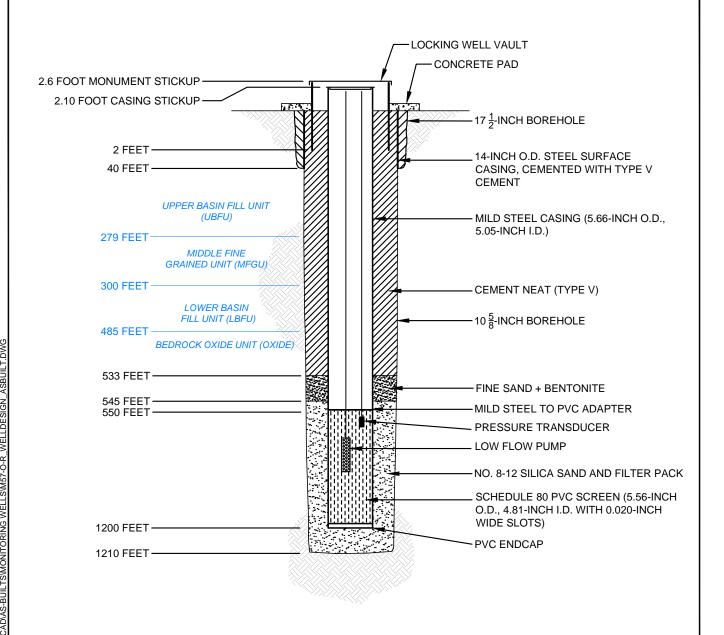
Appendix E – Geophysical Logs

Appendix F – SAPT Documentation


Appendix G – Cement Bond Log Summary


Appendix H – Well Development Field Forms

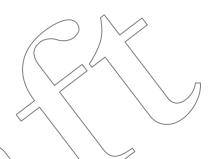

Appendix I – Well Video Log Report


\\haleyaldrich.com\share\phx_common\Projects\Florence copper\129687 PTF Well Drilling\Project Data\Field Data\M57-O-R\Working summary report\2019-0522_M-57R-OWel\nstall Comp Letter Report_EPA_b.docx

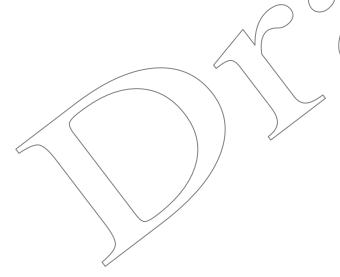
NOTES

- 1. WELL REGISTRATION NO.: 55-229751
- 2. CADASTRAL LOCATION: D (4-9) 28 CBD
- 3. TOP OF CASING ELEVATION: xxxx.xx' AMSL
- 4. CONCRETE PAD ELEVATION: xxxx.xx' AMSL
- 5. I.D. = INSIDE DIAMETER
- 6. O.D. = OUTSIDE DIAMETER
- 7. PVC = POLYVINYL CHLORIDE

PRODUCTION TEST FACILITY FLORENCE COPPER, INC. FLORENCE, ARIZONA


M57R-O SUPPLEMENTAL MONITORING WELL AS-BUILT DIAGRAM

SCALE: NOT TO SCALE MAY 2019


FIGURE 2

DRAFT

APPENDIX A

Arizona Department of Water Resources Well Registry Report

Arizona Department of Water Resources

Groundwater Permitting and Wells PO Box 36020 • Phoenix, Arizona 85067-6020

(602) 771-8527 • 602-771-8500

www.azwater.gov

Well Driller Report and Well Log

THIS REPORT MUST BE FILED WITHIN 30 DAYS OF COMPLETING THE WELL. PURSUANT TO ARIZONA REVISED STATUTE 45-600 AND A.A.C. RULE R12-15-808.

FILE NUMBER D(4-9) 28 CBD WELL REGISTRATION NUMBER

55 - 229751

4/17/19

PERMIT NUMBER (IF ISSUED)

PLEASE PRINT CLEARLY USING BLACK OR BLUE INK SECTION 1. DRILLING AUTHORIZATION **Drilling Firm** DWR LICENSE NUMBER NAME STEWART BROS DRILLING CO DBA SBQ2 LLC 314 To: ADDRESS TELEPHONE NUMBER Mail 505-287-2986 P.O. BOX 2067 CITY / STATE / ZIP FAX MILAN, NM, 87021 SECTION 1. REGISTRY INFORMATION Location of Well Well Owner FULL NAME OF COMPANY, ORGANIZATION, OR INDIVIDUAL WELL LOCATION ADDRESS (IF ANY) 1575 W. Hunt Hwy, Florence, Az 85132 FLORENCE COPPER INC MAILING ADDRESS TOWNSHIP (N/S) RANGE (E/W) SECTION 160 ACRE 10 ACRE 9E NW 1/4 SW 1/4 1575 W HUNT HWY 4.0 28 SE 1/4 1 ATITUDE LONGITUDE CITY / STATE / ZIP O "N 33 3 111° 26 8 FLORENCE, AZ, 85132 MINUTES SECONDS **DEGREES** CONTACT PERSON NAME AND TITLE METHOD OF LATITUDE/LONGITUDE (CHECK ONE) ✓ *GPS: Hand-Held Conventional Survey *GPS: Survey-Grade TELEPHONE NUMBER FAX LAND SURFACE ELEVATION AT WELL 1440 520 374-3984 Feet Above Sea Level WELL NAME (e.g., MW-1, PZ-3, lot 25 Well, Smith Well, etc.) METHOD OF ELEVATION (CHECK ONE) M57R-O GPS: Hand-Held Conventional Survey GPS: Survey-Grade *IF GPS WAS USED, GEOGRAPHIC COORDINATE DATUM (CHECK ONE) NAD-83 Other (please specify) ASSESSOR'S PARCEL ID NUMBER (MOST RECENT) COUNTY PARCEL PINAL SECTION 3. WELL CONSTRUCTION DETAILS **Drilling Method** Method of Well Development Method of Sealing at Reduction Points CHECK ONE CHECK ONE CHECK ONE None ✓ Airlift ☐ Air Rotary ☐ Bail Packed ☐ Bored or Augered Surge Block Swedged Cable Tool Welded ☐ Dual Rotary ✓ Surge Pump ✓ Mud Rotary Other (please specify) ✓ Other (please specify) **Neat Cement** Reverse Circulation **Condition of Well Construction Dates** Driven DATE WELL CONSTRUCTION STARTED CHECK ONE Letted 2/20/19 Air Percussion / Odex Tubing ☐ Capped DATE WELL CONSTRUCTION COMPLETED Other (please specify) Pump Installed Abandoned 3/17/19 I state that this notice is filed in compliance with A.R.S. § 45-596 and is complete and correct to the best of my knowledge and belief.

SIGNATURE OF QUALIFYING PARTY

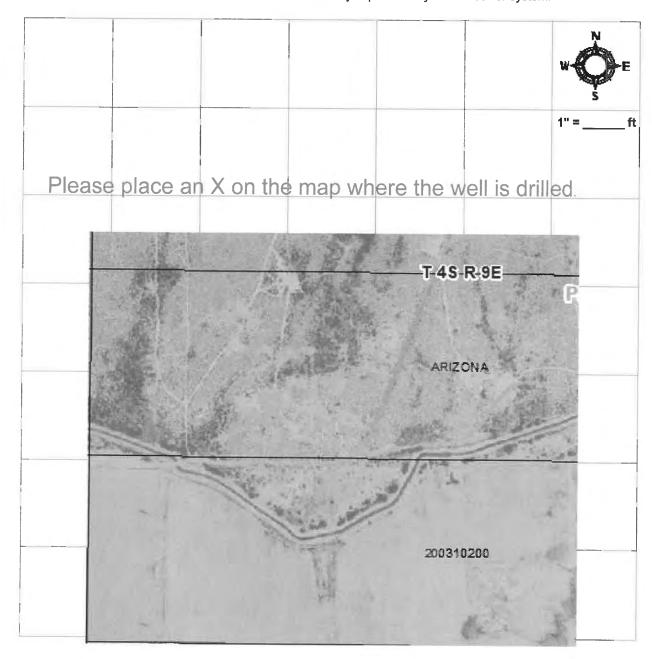
Well Driller Report and Well Log

WELL REGISTRATION NUMBER 55 - 229751

SECTION 4. WELL	CONSTRUC	TION DESIGN	AS B	UILD) (atta	ach addition	nal page if	needed)		
Depth									
DEPTH OF BORING					OMPLETED WEL				
1210		Feet Below Land	Surface	12	00				Feet Below Land Surface
Water Level Inform	nation								
STATIC WATER LEVEL		DATE MEASURED	TIME	MEASURED	IF FLOWING W	ELL, METHOD	OF FLOW REGULATION	١	
243 Feet E	Below Land Surface				□Valve	Other:			

	Boreho	ole						In	stalled Casi	ng						
FR	PTH OM		■ FR	PTH OM		N	MATER				PERF	ORATIO	ON TYF	PE (X)	
FROM (feet)	TO (feet)	BOREHOLE DIAMETER (inches)	FROM (feet)	TO (feet)	OUTER (inches)	STEEL	PVC	ABS	IF OTHER TYPE, DESCRIBE	BLANK OR NONE	WIRE WRAP	SHUTTER SCREEN	MILLS KNIFE	SLOTTED	IF OTHER TYPE, DESCRIBE	SLOT SIZE (inches)
0	39	24	0	39	14	Х				Х						
39	1220	10.625	+2	550	5.66	х				х						-
			550	1200	5.56		Х							х		.020
									Y							

									Installed Annular Material			
DEPTH								ANNU	LAR MATERIAL TYPE (X)		FILT	R PACK
SURFACE				~	ш	В	ENTON	NITE				
FROM (feet)	TO (feet)	NONE	CONCRETE	NEAT CEMENT OR CEMENT GROUT	CEMENT-BENTONITE GROUT	GROUT	CHIPS	PELLETS	IF OTHER TYPE OF ANNULAR MATERIAL, DESCRIBE	SAND	GRAVEL	SIZE
0	39			х					Type V			
39	533			Х					Type V			
533	545							х				3/8
545	1210								Silica Sand	X		8-12


	M SURFACE	EOLOGIC LOG OF WELL	Charle OO
FROM (feet)	TO (feet)	Description Describe material, grain size, color, etc.	Check (X) every interval where wate was encountered (if known)
0	279	Upper Basin Fill Unit	
279	300	Middle Fine Grained Unit	
300	440	Lower Basin Fill Unit	
440	1220	Bedrock Oxide Unit	
	-		
-			

Well Driller Report and Well Log

WELL REGISTRATION NUMBER 55 - 229751

SECTION 6. WELL SITE PLAN				
NAME OF WELL OWNER	COUNTY ASSESSOR	'S PARCEL ID NUMBER (MOST	RECENT)	
FLORENCE COPPER INC	воок	MAP	PARCEL	

- Required for all wells, please draw the following: (1) the boundaries of property on which the well was located; (2) the well location; (3) the locations of all septic tank systems and sewer systems on the property or within 100 feet of the well location, even if on neighboring properties; and (4) any permanent structures on the property that may aid in locating the well.
- Please indicate the distance between the well location and any septic tank system or sewer system.

Well Driller Report and Well Log

Introduction

These instructions are a guide to filling out Form DWR 55-55 (Rev. 06/15/2010), entitled "Well Driller Report and Well Log." Please review the instructions prior to completing the form in black or blue ink. Forms may be obtained at any Arizona Department of Water Resources (ADWR) office and at ADWR's web site, http://www.azwater.gov. For information about the form or these instructions, contact Groundwater Permitting & Wells at (602) 771-8500. There is no fee for filing this form.

When Form DWR 55-55 Must be Filed

Within 30 days after completion of the drilling, deepening or modification of a well, the licensed well driller who performed the work must file a Well Driller Report and Log with ADWR. Because the information in the report describes the well as it was actually constructed, and comes from the person who constructed the well, the information is very valuable to ADWR. For that reason, it is very important to fill out the report with the most accurate information possible.

Instructions for Filling out the Form

Well Registration and Permit Numbers

Fill in the registration number of the well and any ADWR permit number associated with the well in the upper right-hand corner of the first page. Also fill in the well registration number in the upper right-hand corner of all other pages so that the well information on those pages can be identified when the pages are separated during computer imaging.

Section 1 - Drilling Authorization

Fill in the name, address, DWR license number and telephone and fax numbers of the drilling firm filing the report.

Section 2 - Registry Information

Well Owner

Fill in the name, mailing address, telephone number and fax number (if available) of the well owner. If the well owner is a corporation, governmental unit or other entity, provide the name of a contact person.

Location of Well

Fill in the following information relating to the location of the well:

- The street address of the property where the well is located. For monitor wells or other wells associated with contaminant investigations or remedial projects, this will usually be the same as the facility address.
- The legal description of the well site. The legal description is the township, range, section, and in decreasing order, the quarters of that section so that the well location falls in a 10-acre block within that section. Normally, the legal description will be the same as that given in the original Notice of Intent to drill the well, but occasionally a more accurate description is discovered after the Notice is filed.
- The latitude and longitude (in degrees-minutesseconds format) and land surface elevation at the well, and the method used to determine these data. **Please note this information is mandatory.** Use of a Global Positioning System (GPS) receiver is the only method accepted by the Department. The GPS unit should be adjusted to use the NAD-83 datum. Please indicate if the geographic coordinate datum used was NAD-83, and if not, which datum was used.
- The name of the county and the tax assessor's parcel identification number for the land where the well is located. This information can normally be taken from the original Notice of Intent to drill the well, and may also be obtained from the county tax assessor's office. Federal or State land will not have a parcel identification number.

Section 3 - Well Construction Details

Section 3 requires details on the construction of the well. Indicate the drill method by checking the appropriate box. If the drill method is not listed, check the "Other" box and describe the method. To the right of that, indicate the method of well development by checking the

appropriate box. Next, indicate the method of sealing at reduction points. If the method used is not listed, check "Other" and provide a brief explanation. Under *Well Driller Completion Report and Well Log* Form 55-55 Instructions (Rev. 06/2010) Page 2

Condition of Well, indicate whether the well was capped, or a pump was installed, when you left it. Then fill in the date when well construction started, and the date when well construction was completed.

Signature Block

The form must be signed and dated by the qualifying party of the drilling firm.

Section 4 - Well Construction Design (As Built)
Section 4 contains tables to fill in information on the existing borehole, the installed casing and the installed annular material. The tables are broken down by depth interval.

In the first set of boxes, fill in the depth of the boring and the depth of the completed well, as measured in feet below the land surface.

Under **Water Level Information** please indicate the static water level in the well, as measured in feet below the land surface, and the date and time the water level was measured. If the well is a flowing well, include the method by which the artesian flow is regulated.

In the **Borehole** table, fill in the diameter of the borehole in inches, and indicate the depth interval for each change in diameter. In the **Installed Casing** table, fill in the outer diameter of the casing in inches, check the appropriate boxes indicating the type of casing material and the type of perforations, and fill in the slot size of any perforations. Fill in the depth interval for each change in information. Please note that not every interval will be perforated. Check the "Blank or None" box for nonperforated depth intervals. If the type of casing material or perforations is not listed, describe the type in the appropriate box.

In the **Installed Annular Material** table, check the appropriate boxes indicating the type of annular material or filter pack installed at each depth interval. Fill in the size of the filter pack used. Provide the depth interval for each change in information. If the type of annular material is not listed, describe the material in the appropriate box.

Section 5 - Geologic Log of Well

Section 5 requires the geologic or lithologic log of the well. Describe the various units encountered during drilling. Provide as much description as possible. The

log description must be broken down by depth intervals below ground surface, and every interval where groundwater, including perched groundwater, was encountered must be checked. If a consulting firm was involved with the well construction, the consultant's lithologic log may be submitted in lieu of completing Section 5.

Section 6 - Well Site Plan

In the boxes at the top of Section 6, fill in the name of the well owner and the county tax assessor's parcel identification number for the land where the well is located. Below that, provide a scale drawing of where the well was actually constructed on the parcel, illustrating the property boundaries, the well location and any structures on the property. The drawing must also show the location of any septic tank or sewer systems on the property or within 100 feet of the well, even if on neighboring property, and the distance between the well and the septic tank or sewer system. The drawing should closely match the drawing on the original Notice of Intent to drill the well, but the purpose of this drawing is to show where the well was actually drilled, especially if the location is different than originally planned. This information will be shared with the county.

Where to File Form

Completed forms may be mailed to ADWR at the following address:

Arizona Department of Water Resources

Groundwater Permitting and Wells
PO Box 36020
Phoenix, AZ 85067-6020

Completed forms may also be submitted to ADWR's main office at 1110 W. Washington St. Suite 310., Phoenix, AZ 85007.

The completed form must be legible and of good quality when received by ADWR so that it can be scanned into ADWR's permanent records.

Run Date: 12/06/2018

AZ DEPARTMENT OF WATER RESOURCES **WELL REGISTRY REPORT - WELLS55**

Well Reg.No

Location D 4.0 9.0 28 CBD 55 - 229751

AMA PINAL AMA

Registered

FLORENCE COPPER INC

File Type NEW WELLS (INTENTS OR APPLICATIONS)

Name

1575 W HUNT HWY

Application/Issue Date 12/05/2018

FLORENCE

AZ 85132

Owner OWNER

Well Type ENV - MONITOR

Driller No. 314

SubBasin ELOY

Driller Name STEWART BROS DRILLING CO DBA SBQ2 LLC

Driller Phone 505-287-2986

Watershed UPPER GILA RIVER Registered Water Uses MONITORING

County PINAL

Registered Well Uses MONITOR

Discharge Method NO DISCHARGE METHOD LISTED

Power NO POWER CODE LISTED

Intended Capacity GPM

0.00

Well Depth Pump Cap. 0.00 **Draw Down**

0.00 0.00

Case Diam **Case Depth** Water Level Acres Irrig

0.00 0.00 0.00 0.00 **Tested Cap CRT** Log

Finish NO CASING CODE LISTED

0.00

Contamination Site:

NO - NOT IN ANY REMEDIAL ACTION SITE

Tribe: Not in a tribal zone

Comments

Current Action

12/6/2018

DRILLER & OWNER PACKETS MAILED 555

Action Comment: kc

Action History

12/6/2018

550 DRILLING AUTHORITY ISSUED

Action Comment: kc

Action Comment: kc

12/5/2018 155

NOI RECEIVED FOR A NEW NON-PRODUCTION WELL

ARIZONA DEPARTMENT OF WATER RESOURCES

1110 W. Washington St. Suite 310 Phoenix, Arizona 85007

THIS AUTHORIZATION SHALL BE IN POSSESSION OF THE DRILLER DURING ALL DRILLING OPERATIONS

WELL REGISTRATION NO: 55-229751 WELL OWNER ID: M57R-O

AUTHORIZED DRILLER: STEWART BROS DRILLING CO DBA SBQ2 LLC

NOTICE OF INTENTION TO DRILL ENV - MONITOR WELL(S) HAS BEEN FILED WITH THE DEPARTMENT BY:

WELL OWNER: FLORENCE COPPER INC 1575 W HUNT HWY FLORENCE, AZ, 85132

THE WELL(S) IS/ARE TO BE LOCATED IN THE:

SE 1/4 of the NW 1/4 of the SW 1/4 Section 28 Township 4.0 SOUTH Range 9.0 EAST

NO. OF WELLS IN THIS PROJECT: 1

THIS AUTHORIZATION EXPIRES AT MIDNIGHT ON THE DAY OF December 6, 2019

Sella murillo

GROUNDWATER PERMITTING AND WELLS

THE DRILLER MUST FILE A LOG OF THE WELL WITHIN 30 DAYS OF COMPLETION OF DRILLING.

LICENSE NO: 314

ARIZONA DEPARTMENT of WATER RESOURCES

1110 W. Washington St. Suite 310 Phoenix, AZ 85007 602-771-8500 azwater.gov

December 6, 2018

FLORENCE COPPER INC 1575 W HUNT HWY FLORENCE, AZ 85132

Registration No. 55- 229751 File Number: D(4-9) 28 CBD

Dear Well Applicant:

DOUGLAS A. DUCEY Governor

THOMAS BUSCHATZKE
Director

Enclosed is a copy of the Notice of Intention to Drill (NOI) a well which you or your driller recently filed with the Department of Water Resources. This letter is to inform you that the Department has approved the NOI and has mailed, or made available for download, a drilling authorization card to your designated well drilling contractor. The driller may not begin drilling until he/she has received the authorization, and must keep it in their possession at the well site during drilling. Although the issuance of this drill card authorizes you to drill the proposed well under state law, the drilling of the well may be subject to restrictions or regulations imposed by other entities.

Well drilling activities must be completed within one year after the date the NOI was filed with the Department. If drilling is not completed within one year, a new NOI must be filed and authorization from this Department received before proceeding with drilling. If the well cannot be successfully completed as initially intended (dry hole, cave in, lost tools, etc.), the well must be properly abandoned and a Well Abandonment Completion Report must be filed by your driller [as required by A.A.C. R12-15-816(F)].

If you change drillers, you must notify the Department of the new driller's identity on a Request to Change Well Information (form 55-71A). Please ensure that the new driller is licensed by the Department to drill the type of well you require. A new driller may not begin drilling until he/she receives a new drilling authorization card from the Department.

If you find it necessary to change the location of the proposed well(s), you may not proceed with drilling until you file an amended NOI with the Department. An amended drilling authorization card will then be issued to the well drilling contractor, which must be in their possession before drilling begins.

Arizona statute [A.R.S. § 45-600] requires registered well owners to file a Pump Installation Completion Report (form 55-56) with the Department within 30 days after the installation of pumping equipment, if authorized. A blank report is enclosed for your convenience. State statute also requires the driller to file a complete and accurate Well Drillers Report and Well Log (form 55-55) within 30 days after completion of drilling. A blank report form was provided to your driller with the drilling authorization card. You should insist and ensure that all of the required reports are accurately completed and timely filed with the Department.

Please be advised that Arizona statute [A.R.S. § 45-593(C)] requires a registered well owner to notify the Department of a change in ownership of the well and/or information pertaining to the physical characteristics of the well in order to keep this well registration file current and accurate. Any change in well information or a request to change well driller must be filed on a Request to Change Well Information form (form 55-71A) that may be downloaded from the ADWR Internet website at www.azwater.gov.

Sincerely,

Groundwater Permitting and Wells Section

Arizona Department of Water Resources Groundwater Permitting and Wells Section P.O. Box 36020 Phoenix, Arizona 85067-6020

(602) 771-8500 • (602) 771-8690 · www.azwater.gov ·

2018

Notice of Intent to Drill, Deepen, or Modify a

\$150 FEE

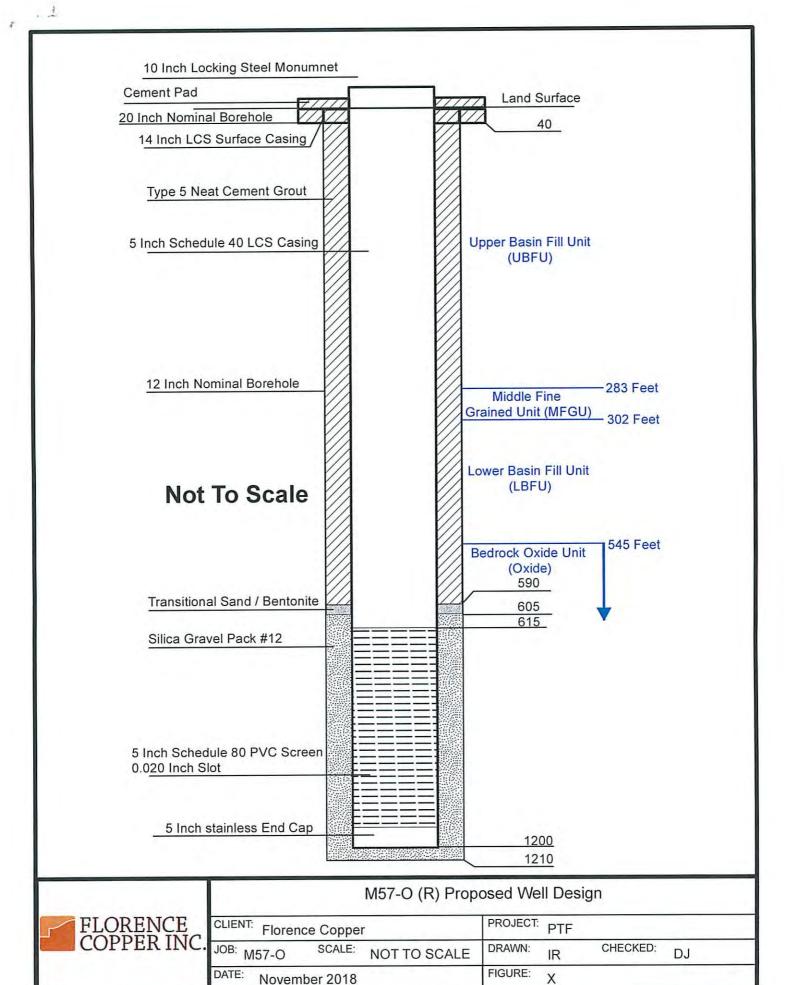
ADWR Monitor / Piezometer / Environmental Well

Review instructions prior to completing form in black or blue ink. You \underline{must} include with your Notice:

\$150 check or money order for the filing fee.

Well construction diagram, labeling all specifications listed in Section 6 and Section 7. Authority for fee: A.R.S. § 45-596 and A.A.C. R12-15-104.

PALICA	PIN IN	FILE NUMBER
RECEIVED DATE	08	WELL REGISTRATION NUMBER
12618 DATE	REMEDIAL ACTION SITE	55-229 /5 1


SECTION 1. REGISTRY I																
To determine the location of well, plea (http://www.earthpoint.us/Townships.a	ise refer to the Well Registry Map (http	s://giswet	.azwater.go	ov/WellRegis	try/Defa	ult.aspx) and	Vor Go	ogle Eart	h							
Well Type	Proposed Action		Locat	ion of W	/ell		-									
CHECK ONE	CHECK ONE			OCATION A		(IF ANY)										
☑ Monitor	☑ Drill New Well		1575 V	N. Hunt I	Hwy. I	Florence,	AZ,	85132								
☐ Piezometer	☐ Deepen		TOWNSHIP	P(N/S) RANG	E (E/W)	SECTION	160	ACRE	40 ACRE	10 /	ACRE					
☐ Vadose Zone	☐ Modify		4.0 S	9.0	E	28	sw	1/4	NW 1/4	SE	1/4					
☐ Air Sparging			COUNT	Y ASSESSO	R'S PAF	RCEL ID NUI	MBER	74	/4		/4					
Soil Vapor Extraction	WELL REGISTRATION NUMBER		воок		PARCEL	10	01									
Other (please specify):	(if Deepening or Modifying) 55 -		150/01257	Y WHERE V	T 9 C. L.	MAP			PAROLL	10	101					
,	33 -		COUNTY WHERE WELL IS LOCATED PINAL													
SECTION 2. OWNER INF	ORMATION							-	-		200					
Land Owner	ORMATION		Well	Owner (c	hook thin	hav if I and	Ouror	and Mall	Owner are sar							
FULL NAME OF COMPANY, ORGAN	IZATION, OR INDIVIDUAL	_	FULL NA	AME OF CO	MPANY.	GOVERNM	ENT A	GENCY.	OR INDIVIDUA	ne						
AZ State Land Dept (Mine				се Сорр												
MAILING ADDRESS		MAILING	ADDRESS													
1616 W Adams St			V Hunt H													
CITY / STATE / ZIP CODE			United States of the States of	TATE / ZIP	DIEUT (ED.											
Phoenix, AZ 85007 CONTACT PERSON NAME AND TITI	F			ce, AZ, 8		NID TITLE										
	Lisa Atkins, State Land Commissioner					CONTACT PERSON NAME AND TITLE Ian Ream, Senior Hydrologist										
TELEPHONE NUMBER		TELEPHONE NUMBER FAX														
(602) 542-4631			No. of Contract of	(520) 37		1	1703									
SECTION 3. DRILLING A	UTHORIZATION															
Drilling Firm			Const	ultant (if a	applicable	e)										
NAME Stewart Brothers Dril	lling Co. DBA SBQ2 LLC		CONSULTING FIRM Haley & Aldrich, INC													
DWR LICENSE NUMBER 314	ROC LICENSE CATEGORY A-4		CONTACT PERSON NAME Mark Nicholls													
TELEPHONE NUMBER 505-287-798	6 FAX		TELEPHONE NUMBER 6027602423 FAX													
EMAIL ADDRESS Joel Stewart < Joel	@stewartbrothers.com>		EMAIL ADDRESS	man la la	olls@	haleyaldı	rich.c	om								
SECTION 4.			***													
Questions		Yes	No	Explan	ation:											
Are all annular spaces between the placement of grout at least 2	the casing(s) and the borehole for 2 inches?	\boxtimes		in and nea WQARF, I	r ground DOD, LU	dwater conta JST).	aminat	ion sites	required for w (such as CEF	RCLA,						
Is the screened or perforated infeet in length?	terval of casing greater than 100	\boxtimes		located in CERCLA,	and nea WQARF	r groundwa , DOD, LUS	ter cor ST).	ntaminati	ecial standard on sites (such	as	ells					
Are you requesting a variance to of steel casing in the surface sea.		\boxtimes	R12-15-80	11 (27) a	"vault" is de	efined	as a tam	suant to A.A. per-resistant and surface.	C. water	tight						
 Is there another well name or id with this well? (e.g., MW-1, PZ2 	2, 06-04, etc.)	X		If yes, please state M57R-O												
 Have construction plans been of Department of Environmental Q 		X		If yes, please state agency contact & phone number												
6. For monitor wells, is dedicated p	X		If yes, please state design pump capacity (Gallons per Minute) low-flow													
 Is this well a new well located in AND intended to pump water for groundwater? 		\boxtimes	You must also file a supplemental form A.R.S. § 45-454(c) & (f) unless the well is a replacement well and the total number of operable wells on the site is not increasing. (See instructions)													
8. Will the well registration number on the upper part of the casing?	be stamped on the vault cover or		If no, where will the registration number be placed?													

ECTION 5. Well Construction I ovide a well construction diagram showi	ng all existing well construction features listed in Section 6 and Section 7.
	And the second s

Notice of Intent to Drill, Deepen, or Modify a Monitor / Piezometer / Environmental Well

VAILT	DEC	CTDA	TION	NUMBER	•
VVELL	KEG	SIKA	LIUN	MOINDEL	į.
		-	7	A CONTRACTOR OF THE PARTY	
55 -	77	4			

SECTIO	N 6. WEL	L C	SNC	TRU	JCTI	ON	_											-1				
Drill Met							Method of Well Development								Grout Emplacement Method							
CHECK ON	=					CHECK ONE								CHECK ONE								
☐ Air Rotary ☐ Bored or Augered ☐ Cable Tool ☐ Dual Rotary											 ☐ Tremie Pumped (Recommended) ☐ Gravity ☐ Pressure Grout ☐ Other (please specify): 						mended)					
☐ Dual Rotary ☑ Mud Rotary					Other (please specify):																	
□ Reverse Circulation □ Driven						Method of Sealing at Reduction Points							Surface or Conductor Casing									
☐ Jette							CHECK ONE							CHECK ONE								
☐ Air Percussion / Odex Tubing ☐ Other (please specify):						Z L		elde	ed ged		☐ Flush Mount in a vault ☐ Extends at least 1' above grade											
DATE CON	STRUCTION 11/15				Ī] Pa	acke		cify)	:										
													ıdc	litional page if	neede	ed)						
Attach a	well cons	tructi	on c	liagr	am la	abeli	ng a	all s	pec	ifications b	oelo	w.										
	Borehol	е												Casing		D=-			101.	D/D-	/ T. \	
	FACE				DEPTH F SURFA FROM (feet)						-	MAT	ER	IAL TYPE (T)		. 6				TYPE	(1)	
FROM (feet)	TO (feet)	DIA	REHOI METE iches)	R			TO (feet)			OUTER DIAMETER (inches)	STEEL	PVC	ABS	IF OTHER TYPE, DESCRIBE	BLANK OR NONE	WIRE WRAP	SCREEN	MILLS	SLOTTED		OTHER TYPE, SCRIBE	SLOT SIZE IF ANY (inches)
0	40	1	7.5		0			40		14	X				\boxtimes							
40	1210	10	.625	5	0	0 610 5.625 🗵 🗆 🗆						\boxtimes										
					610 1200 5.625								\times	0.020								
25071	LEDO!!	-				-		-	ANN	Annula:						-		-	- 191		FILTE	R PACK
	DEPTH FROM SURFACE BE					BEI	1OTA	ANNULAR MATERIAL TYPE (T) FILTER PACK STONITE														
FROM (feet)	TO (feet)	NONE	CONCRETE	NEAT CEMENT OR CEMENT GROUT	CEMENT- BENTONITE GROUT	GROUT	CHIPS	PELLETS		IF (FOTHER TYPE OF ANNULAR MATERIAL, DESCRIBE						SIZE					
0	585			X					T	ype V												
585	600							X	В	entonite/	Ch	iok	9 5	Sand						X		
600	1210								C	olorado :	Sili	ca	Sa	and						X		8-12
IF THIS WE	LL HAS NES	TED C	ASING	SS, SF	ECIF	Y NUN	MBEF	OF (CASI	NG STRINGS		EXPE	СТ	ED DEPTH TO W		Feet 240		ow (Groun	nd Su	rface)	
	N 8. PEF																					
m	neasureme	nts at	t this	well	. (Se	e ins	tructi	ions.))				he	property for th	e pur	pos	e o	f ta	king	wat	er level	
			_	_	_	_	_	_	_	R SIGNAT	_				7.00							
I state that	t this notice	is filed					4. <i>R</i> .5	S. § 4	15-59	96 and is con	nple	te ar		correct to the bes								
PRINT NAME	Permis	sion			wne mir		ller	150	11_0	026500		RINT	NA								e instructio	ins)
AND TITLE	OF	JIUII	grai	iteu	- (11)1	icia	100	130	1 1-0	220000	SI	GNA	UF	RE OF		1101	1 19	uit	Jiog	iot		
DATE	±R								-			ELL (JVVI	J S	17	_	7		7	0	12	
☐ By ch	necking this ectronic mai		you	agree	e to a	allow	ADV	NR t	o co	ontact you	D			checking this bo electronic mail.	x, you	u ag	<u>د</u> gree	to				contact you
EMAIL ADDRESS									E!	EMAIL ADDRESS IanReam@florencecopper.com												

Kevin J. Crego

From: lan Ream <lanReam@florencecopper.com>
Sent: Wednesday, December 5, 2018 2:19 PM

To: Kevin J. Crego; Lauren Candreva (lauren.candreva@gmail.com)

(lauren.candreva@gmail.com)

Subject: FW: ASLD (Land Owner) Approval for NOI's - Florence Copper (Lease #11-26500)

Hi Lauren and Kevin,

The email below from Bob Harding with ASLD to Stella might help address the mineral lease question.

Cheers,

lan

From: Dan Johnson

Sent: Thursday, October 19, 2017 1:16 PM

To: Ian Ream; Candreva, Lauren (LCandreva@haleyaldrich.com)

Subject: FW: ASLD (Land Owner) Approval for NOI's - Florence Copper (Lease #11-26500)

FYI, please read below.

Dan Johnson VP | General Manager

Florence Copper Inc.

1575 W. Hunt Highway Florence AZ USA 85132 C 520-233-1930 T 520-374-3984 F 520-374-3999

E danjohnson@florencecopper.com Web florencecopper.com

From: Robert Harding [mailto:RHarding@azland.gov]

Sent: October-19-17 11:32 AM **To:** samurillo@azwater.gov

Cc: Joe Dixon; John Schieffer; Heide Kocsis; Dan Johnson

Subject: ASLD (Land Owner) Approval for NOI's - Florence Copper (Lease #11-26500)

Stella Murillo, Manager Groundwater Permitting and Wells Arizona Department of Water Resources

Stella,

Florence Copper Inc. has recently filed a number of Notice of Intent (NOI) to Drill applications for injection, recovery, and monitor wells associated with its Production Test Facility (PTF) to be constructed and operated on State Trust Lease #11-26500, located in Section 28, Township 4 South, Range 9 East. The lessee, Florence Copper, has discussed the specifics of this program with the Arizona State Land Department (ASLD), and the Department has no objection to the construction of the proposed wells. In addition, as these wells will not be utilized for potable water production, ASLD has no objection to the lessee's request that Florence Copper be registered as the Well Owner.

Please accept this email as documentation of Land Owner's approval for the well NOI applications currently under review by ADWR for Florence Copper on ASLD Lease #11-26500, Section 28, T4S, R9E.

Thank you. Best regards,

Bob Harding
Hydrologist
Water Rights Section
Arizona State land Department
602.542.2672

"Notice Regarding Transmission

This message is intended only for the person(s) to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are hereby notified that any dissemination or copying of this communication is prohibited. Please notify us of the error in communication by telephone (778-373-4533) or by return e-mail and destroy all copies of this communication. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Taseko Mines Limited or any affiliated or associated company. The recipient should check this email and any attachments for the presence of viruses. Neither Taseko Mines Limited nor any affiliated or associated company accepts any liability for any damage caused by any virus transmitted by this email. Thank you."

Printed: 12/5/2018 2:26:21 PM

Arizona Department of Water Resources

1110 West Washington Street, Suite 310

Phoenix AZ 85007

Customer:

KEITH R MUNSEY

Receipt #:

19-63091

Office:

MAIN OFFICE

Receipt Date: 12/05/2018

Sale Type:

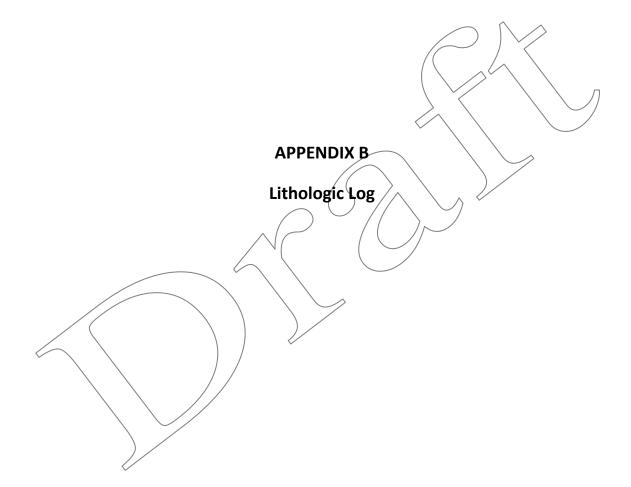
IN_PERSON

Cashier:

WRKJC

Item No.	Function Code	AOBJ	Description	Ref ID	Qty	Unit Price	Ext Price
67488	122221	4439-TT	Notice of intention to drill a wel well described in subsection (A) Section		1	150.00	150.00
					RECEIPT	TOTAL:	150.00

04510B


Authorization

Payment type: CREDIT CARD

Amount Paid: \$150.00

Payment Received Date: 12/05/2018

Notes: FROM TTA.

HALEY	LITH	HOLOGIC LOG DRAFT	M57R-O
Project Production Client Florence Co Contractor Stewart Bro	Test Facility, Florence, Arizopper, Inc.	zona	File No. 129687 Sheet No. 1 of 15 Cadastral Location D (4-9) 28
Borehole Diameter(s) 17	Conventional Mud 7.5/10.625 in.	Land Surface Elevation feet, a Datum State Plane NAD 83 Location See Plan	Finish March 11, 2019 H&A Rep. K. Ford
Depth (ft) Elevation USCS Symbol Stratum Change Depth (ft)	VISUAL-MANU/	AL IDENTIFICATION AND DESCRIPTION	COMMENTS
		feet) Primarily fine to coarse sand with ~5% fines and gravel is angular. Fines have low plasticity. UBFU	Well Registry ID: 55-229751 Surface Completion: Locking Well Vault & Concrete Pad Well casing stickup: 2.10 feet
-		(40-60 feet) Primarily gravel to 25 mm with \sim 15% fines vel is angular to subrounded. Fines have no plasticity.	Surface Casing: 14-inch mild steel; 0 - 40 feet Well Casing: Nominal 5-inch diameter Mild Steel; 0 - 550 fe
-		$\frac{1D}{1D}$ (60-70 feet) Primarily gravel to 30 mm with ~35% d gravel is angular to subrounded. Fines have medium	Unit Intervals: UBFU: 0 - 279 feet MGFU: 279 - 300 feet LBFU: 300 - 485 feet Oxide: 485 - 1210 feet
- - -		(70-110 feet) Primarily medium to coarse sand with ~ 15 m. Sand and gravel is angular to subrounded. Fines are	5%
NOTE: Lithologic descrptions & Aldrich OP2001A - F	s, group symbols, and grain-size de Field Practice for Soil Identification	eterminations based on the USCS visual-manual method (Ha	M57R-O

HALEY			H	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 2 of 15			
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION				
-75 - - - - - - - - - - - -		SM	80	SILTY SAND with GRAVEL (70-110 feet) Continued				
- 85 - - - 90 - - - 95 - - - -100-					Seal: Type V neat cement; 0 - 5; feet Fine Sand & Bentonite; 53;			
- -105- - - -110- - - - -115-		SC	110 .	CLAYEY SAND with GRAVEL (110-162 feet) Primarily fine to coarse sand with ~40% fines and ~25% gravel to 15 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	545 feet			
- -120- - - - - -125- - - - - -130-								
- -135- - - - - - -140- - -								
- -145- - - - - - -150- - - - - - -155-								
-160- -								

LITHOLOGIC LOG DRAFT File No. 129887 Sheet No. 3 of 15 VISUALMANUAL IDENTIFICATION AND DESCRIPTION VISUALMANUAL IDENTIFICATION AND DESCRIPTION INC. SM. 102 SILTY SAND with GRAVEI. (162-230 feet) Primarily fines to coarse said with —15% fines and —30% graved to 15 mm. Sand and graved is angular to subrounded. Fines are 185- 185- 186- 200- 205- 210- 215- 220- 225- 226- 227- 228- 228- 228- 230- 230- 240- 240- 240- 240- 240- 240- 240- 24	-O
100 100	
SM 162 SILTY SAND with GRAVEL (16-230 feet) Primarily fines to coarse sand with ~15% fines and ~30% gravel to 15 mm. Sand and gravel is angular to subrounded. Fines are non-plastic. UBFU 170- 176- 188- 188- 199- 200- 205- 216- 227- 228- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
SM 162 SILTY SAND with GRAVEL (16-230 feet) Primarily fines to coarse sand with ~15% fines and ~30% gravel to 15 mm. Sand and gravel is angular to subrounded. Fines are non-plastic. UBFU 170- 176- 188- 188- 199- 200- 205- 216- 227- 228- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
ines and = 30% gravel to 15 mm. Sand and gravel is angular to subrounded. Fines are non-plastic. UBFU 170- 176- 188- 190- 200- 200- 216- 216- 220 25C CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with = 35% fines and = 30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
170- 177- 178- 189- 189- 199- 199- 200- 205- 210- 215- 220- 225- 226- 227- 228- 230- SC	
185- 189- 199- 195- 200- 205- 210- 225- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with -35% fines and -30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
185- 186- 187- 188- 189- 199- 195- 200- 205- 210- 225- 226- 227- 228- 228- 239- 25- 25- 25- 25- 25- 26- 27- 28- 28- 28- 28- 28- 28- 28- 28- 28- 28	
189- 190- 195- 200- 205- 210- 215- 220- 225- 230- SC	
180- 185- 190- 195- 200- 205- 210- 225- 226- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
185- 190- 195- 200- 205- 210- 215- 220- 225- 230- SC CLAYEV SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
185- 190- 195- 200- 205- 210- 215- 220- 225- 230- SC CLAYEV SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
200- 205- 210- 225- 220- 225- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
200- 205- 210- 225- 220- 225- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
200- 200- 200- 210- 225- 220- 225- 230- SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~ 35% fines and ~ 30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
200- 205- 210- 215- 220- 225- 230- SC	
220- 225- 230- SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
200- 205- 210- 215- 220- 225- 230- SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 225- 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 220- 220- 220- 230- SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 225- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 225- 230 SC 230 CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 225- 230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 220- 230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
220- 230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
230 SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
SC SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
SC SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
SC CLAYEY SAND with GRAVEL (230-240 feet) Primarily fine to coarse sand with ~35% fines and ~30% gravel to 20 mm. Sand and gravel is angular to subrounded. Fines have medium plasticity. UBFU	
235-	
240	
240 240	
SM SILTY SAND with GRAVED (240-279 feet) Primarily medium said with ~13% lines and ~20% gravel to 15 mm. Sand and gravel is angular to subrounded. Fines are non-	
plastic. UBFU Depth interval adjusted to reflect e-log for MFGU.	
NOTE: Lithologic descrptions, group symbols, and grain-size determinations based on the USCS visual-manual method (Haley	

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

H	ALE	PRIC	H	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 4 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
-255- -250- 255- 		SP- SM	255	SILTY SAND with GRAVEL (240-279 feet) Continued	
-265- -270- 275-			270		
-280- -285- - -290-		СН	279	SANDY FAT CLAY with GRAVEL (279-300 feet) Primarily fines with high plasticity with ~25% sands and ~25% gravels to 20 mm. MFGU Middle fine grained unit, confirmed via e-log.	
-295- -300- -305- -310-		SM	300	SILTY SAND (300-360 feet) Primarily medium to coarse sand with ~15% fines and ~5% gravel to 10 mm. Sand and gravel is angular to subangular. Fines are non-plastic. LBFU Depth interval adjusted to reflect e-log for MFGU.	
-315- -320- -325-					
- -330- - - - - -335-					

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

Depth (ft)	uo			File No. 129687 Sheet No. 5 of 15	
	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
- - - -340- - - - - -345- -		SM	340	SILTY SAND (300-360 feet) Continued	
- -350- - - - - - - 355- - -					
- -360- - - - - - -365- - - - - -370-		SM	360	SILTY SAND with GRAVEL (360-380 feet) Primarily medium to coarse sand with ~15% fines and ~15% gravel to 10 mm. Sand and gravel is angular to subangular. Fines are non-plastic. LBFU	
-375 - -375- - - - - - - -380-		SM	. 380	SILTY SAND (380-440 feet) Primarily fine to coarse sand with ~15% fines and ~10%	
- - -385- - - - - - -390-		Sivi		gravel to 10 mm. Sand and gravel is angular to subangular. Fines are non-plastic. LBFU	
- - -395- - - - - - -400- -					
- -405 - - - - - -410 - -					
-415- -415- - - -420-					

HALEY				LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 6 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
425		SM	425	SILTY SAND (380-440 feet) Continued	
430-					
435- 440-		SC	440	CLAYEY SAND with GRAVEL (440-460 feet) Primarily medium to coarse sand with	
- - -445- - -				\sim 20% fines and \sim 15% gravel to 15 mm. Sand and gravel is angular to subangular. Fines have medium plasticity. LBFU	
450- - - - - 455-					
460- - - - - - - - - -			460	QUARTZ MONZONITE (460-980 feet) Consists of quartz at approximately 35%, potassium feldspars at approximately 35%, plagioclase at approximately 25%, and biotite at approximately 5%. Chrysocolla fragments and CU mineralization.	
-470- -					
-475 -475 - - - -480					
485					
490-					
500- -					
505					
NOTE	E: Lith & Al	ologic (descrption P2001A -	ns, group symbols, and grain-size determinations based on the USCS visual-manual method (Haley Field Practice for Soil Identification and Description).	M57R-O

USUAL-MANUAL IDENTIFICATION AND DESCRIPTION Filter Pack: 8 - 12 CO Silica Sand; 545 - 1210 feet Thread Adapter: Stainless Steel SCH 80 F480 PVC to SCH 40 F480 Mild Steel: 550 feet Well Screen: Nominal 5-inch diameter, SCH 80 PVC Screen	HA	XE.	PRIC	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 7 of 15
Filter Pack: 8 - 12 CO Silica Sand; 545 - 1210 feet Thread Adapter: Stainless Steet SCH 80 1480 PVC to SCH 40 F480 Mid Steel: 50 feet Will Steen Normal 5-inch diameter, SCH 80 PVC Streen (0.020-inch slots); 550 - 1200 f 550- 560- 565- 565- 565- 565- 566- 566	Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)		
	-510- 515- 515- 520- 				QUARTZ MONZONITE (460-980 feet)	Sand; 545 - 1210 feet Thread Adapter: Stainless Steel SCH 80 F480 PVC to SCH 40 F480 Mild Steel: 550 feet

ΛL	DRIC	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 8 of 15
Depth (ft)	USCS	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
600- 605- 610- 615- 620- 625- 635- 640- 655- 660- 670- 675-		630	QUARTZ MONZONITE (460-980 feet) Continued	

		-\/			M57R-O
"	XL	PRIC	H	LITHOLOGIC LOG DRAFT	File No. 129687 Sheet No. 9 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
-70: -70: -71: -71: -72: -73: -74: -74: -75: -76: -76: -76: -76:	5-		725	QUARTZ MONZONITE (460-980 feet) Continued	

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

H	ALE	Y	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 10 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
-770 ⁻ - - - - -775					
- - -780- - -					
- -785- - - - - -790-					
- - - -795- - -					
- -800- - - - - - -805-					
- - - 810- -					
- -815- - - - - -820-			815	QUARTZ MONZONITE (460-980 feet) Continued	
- - - -825- -					
-830- - - - - - -835-					
-840-					
- -845- - - -					
-850 - - - - -855					

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

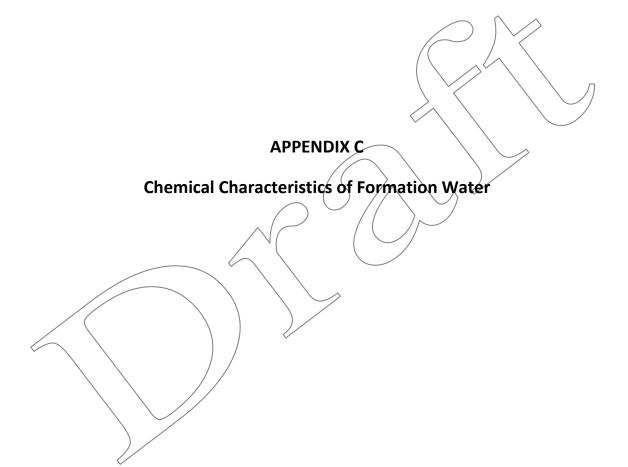
H	ALE	Y	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 11 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
- - -860					
- -865 -					
-870- -					
- -875- - - -					
-880- - - -					
-885- - - - - -890-					
-895					
- - - 900-					
- - - -905			905	QUARTZ MONZONITE (460-980 feet) Continued	
- - -910-				Continued	
- -915- -					
- -920- - -					
- -925- - - -					
- -930- - - -					
-935 - - - -					
-940 - - - 					

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

H	ALE	Y	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 12 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
-945			980	DIABASE (980-1005 feet) Dark gray to black igneous rock. QUARTZ MONZONITE (1005-1210 feet) Consists of quartz at approximately 35%, potassium feldspars at approximately 35%, plagioclase at approximately 25%; and biotite at approximately 5%. Chrysocolla fragments and CU mineralization.	

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

H		Y	Н	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 13 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
1030- 1035- 1040- 1045- 1055- 1066- 1065- 1065- 1079- 1088- 1089- 1099- 1095- 1095- 1109- 1109- 1109- 1119- 1115-	Elev	SA S	Str. Str. Chop	QUARTZ MONZONITE (1005-1210 feet) Continued	
<u> </u>					


H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

H	ALE	Y	:H	LITHOLOGIC LOG DRAFT	M57R-O File No. 129687 Sheet No. 14 of 15
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
1120					
- - - - 1125					
- - 1130					
- - 1 135 - -					
1140 - - -					
- 1145 - - -			1145	QUARTZ MONZONITE (1005-1210 feet) Continued	
1150 - - - -					
1155 - - - - 1160					
- - - - 4165					
- - - 1170					
- - - - 1175 - -					
- - 1180 - -					
- - 1185 - - -					
- 1190 - - -					
- 1195 - - - -					
1200 - - - -					

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

ш	AI E	·			M57R-O
	ÄLE	PRIC	H	LITHOLOGIC LOG DRAFT	File No. 129687 Sheet No. 15 of 15
) (ft)	tion	SS	tum nge (ft)		
Depth (ft)	Elevation	USCS Symbol	Stratum Change Depth (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	
1205			1205	QUARTZ MONZONITE (1005-1210 feet) Continued	
- 1210	+		1210		Total Borehole Depth: Driller = 1210 feet; Geophysical Logging = 1210 feet

H8A-LITHOLOG-PHOENX-NO WELL HA-L1809-PHX.GLB LITHOLOGIC REPORT DATATEMPLATE+.GDT WHALEYALDRICH.COMISHAREBOS_COMMON1729887/GITH.GPJ

May 13, 2019

Barbara Sylvester Brown & Caldwell 201 E. Washington Suite 500 Phoenix, AZ 85004

TEL (602) 567-3894 FAX -

Work Order No.: 19D0679
RE: Ground Water Monitoring 1
Order Name: Florence Copper

Dear Barbara Sylvester,

Turner Laboratories, Inc. received 2 sample(s) on 04/26/2019 for the analyses presented in the following report.

All results are intended to be considered in their entirety, and Turner Laboratories, Inc. is not responsible for use of less than the complete report. Results apply only to the samples analyzed. Samples will be disposed of 30 days after issue of our report unless special arrangements are made.

The pages that follow may contain sensitive, privileged or confidential information intended solely for the addressee named above. If you receive this message and are not the agent or employee of the addressee, this communication has been sent in error. Please do not disseminate or copy any of the attached and notify the sender immediately by telephone. Please also return the attached sheet(s) to the sender by mail.

Please call if you have any questions.

Respectfully submitted,

Turner Laboratories, Inc. ADHS License AZ0066

Elzan Chai

Elizabeth Kasik Laboratory Director

Client: Brown & Caldwell

Project: Ground Water Monitoring 1 Order:

Work Order: 19D0679 **Date Received:** 04/26/2019 **Order: Florence Copper**

Work Order Sample Summary

Date: 05/13/2019

 Lab Sample ID
 Client Sample ID
 Matrix
 Collection Date/Time

 19D0679-01
 M57R-0
 Ground Water
 04/26/2019 1010

 19D0679-02
 Trip Blank
 Trip Blank
 04/26/2019 0000

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

Case Narrative

Date: 05/13/2019

The 8015D analysis was performed by TestAmerica Laboratories, Inc. in Phoenix, AZ.

The radiochemistry analysis was performed by Radiation Safety Engineering, Inc. in Chandler, AZ.

E4 Concentration estimated. Analyte was detected below laboratory Minimum Reporting Limit (MRL)

but above MDL.

H5 This test is specified to be performed in the field within 15 minutes of sampling; sample was

received and analyzed past the regulatory holding time.

M3 The spike recovery value is unusable since the analyte concentration in the sample is

disproportionate to the spike level. The associated LCS/LCSD recovery was acceptable.

V1 CCV recovery was above method acceptance limits. This target analyte was not detected in the

sample.

All soil, sludge, and solid matrix determinations are reported on a wet weight basis unless otherwise noted.

ND Not Detected at or above the PQL

PQL Practical Quantitation Limit

DF Dilution Factor

PRL Project Reporting Limit

Client Sample ID: M57R-0 **Client:** Brown & Caldwell **Project:**

Collection Date/Time: 04/26/2019 1010 Ground Water Monitoring 1

Date: 05/13/2019

Work Order: 19D0679 Matrix: Ground Water **Order Name:** Florence Copper 19D0679-01 Lab Sample ID:

Analyses	Result P	PRL PQL	Qual	Units DF	Prep Date	Analysis Date	Analyst
Nitrate + Nitrite Sum-Calculation							
Nitrate and Nitrite Sum	3.0	0.10		mg/L 1	04/26/2019 1610	0 04/26/2019 1938	B EJ
ICP Dissolved Metals-E 200.7 (4.4)							
Calcium	49	4.0		mg/L 1	04/29/2019 1140	05/01/2019 1120) MH
Iron	0.040 0.00	0.30	E4	mg/L 1	04/29/2019 1140	05/01/2019 1120) MH
Magnesium	12	3.0		mg/L 1	04/29/2019 1140	05/01/2019 1120) MH
Potassium	7.1	5.0		mg/L 1	04/29/2019 1140	05/01/2019 1120) MH
Sodium	210	5.0		mg/L 1	04/29/2019 1140	0 05/01/2019 1120) MH
ICP/MS Dissolved Metals-E 200.8 (5.4)							
Aluminum	ND	0.0400		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Antimony	0.00056	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Arsenic	0.0057	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Barium	0.024	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Beryllium	ND	0.00025		mg/L 1	04/29/2019 1140	0 05/01/2019 1621	MH
Cadmium	ND	0.00025		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Chromium	0.0026	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Cobalt	0.00048	0.00025		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Copper	0.0094	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Lead	ND	0.00050		mg/L 1	04/29/2019 1140	0 05/01/2019 1621	MH
Manganese	0.082	0.00025		mg/L 1	04/29/2019 1140	0 05/01/2019 1621	MH
Nickel	0.0030	0.00050		mg/L 1	04/29/2019 1140	0 05/01/2019 1621	MH
Selenium	0.0041	0.0025		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Thallium	ND	0.00050		mg/L 1	04/29/2019 1140	05/01/2019 1621	MH
Zinc	ND	0.040		mg/L 1	04/29/2019 1140	0 05/01/2019 1621	MH
CVAA Dissolved Mercury-E 245.1							
Mercury	0.00014 0.00	0.0010	E4	mg/L 1	05/09/2019 120:	5 05/09/2019 1602	2 MH
рН-Е150.1							
pH (pH Units)	8.0		Н5	- 1	04/26/2019 160	9 04/26/2019 1628	3 LXM
Temperature (°C)	23		H5	- 1		9 04/26/2019 1628	
p(°)				1	120.2017 100.	3202019 1020	. 2.1111

Client: Brown & Caldwell Client Sample ID: M57R-0

Project:Ground Water Monitoring 1Collection Date/Time: 04/26/2019 1010Work Order:19D0679Matrix: Ground WaterLab Sample ID:19D0679-01Order Name: Florence Copper

Analyses	Result	PRL	PQL	Qual	Units	DF	Prep Date	Analysis Date	Analyst
ICP/MS Total Metals-E200.8 (5.4)									
Uranium	0.019		0.00050		mg/I	1	05/07/2019 0950	05/08/2019 1352	2 MH
Anions by Ion Chromatography-E300.0	(2.1)								
Chloride	200		20		mg/I	20	05/01/2019 1625	5 05/03/2019 0239	e EJ
Fluoride	1.0		0.50		mg/I	1	04/26/2019 1610	04/26/2019 1938	B EJ
Nitrogen, Nitrate (As N)	2.8		0.50		mg/I	1	04/26/2019 1610	04/26/2019 1938	B EJ
Nitrogen, Nitrite (As N)	0.27		0.10		mg/I	1	04/26/2019 1610	04/26/2019 1938	B EJ
Sulfate	180		100		mg/I	20	05/01/2019 162:	5 05/03/2019 0239) EJ
Calculation-Ion Balance									
Anion	14.6				meq/I	1	05/13/2019 124	05/13/2019 1242	2 KB
Cation	12.8				meq/I	1	05/13/2019 124	05/13/2019 1242	2 KB
Cation/Anion, % Difference	6.91				meq/I	1	05/13/2019 124	05/13/2019 1242	2 KB
Alkalinity-SM2320B									
Alkalinity, Bicarbonate (As CaCO3)	220		2.0		mg/I	1	04/30/2019 1430	04/30/2019 1524	4 CR
Alkalinity, Carbonate (As CaCO3)	ND		2.0		mg/I	1	04/30/2019 1430	04/30/2019 1524	4 CR
Alkalinity, Hydroxide (As CaCO3)	ND		2.0		_	1		04/30/2019 1524	
Alkalinity, Total (As CaCO3)	220		2.0		mg/I	1	04/30/2019 1430	0 04/30/2019 1524	4 CR
Specific Conductance-SM2510 B									
Conductivity	1500		0.20		μmhos/cn	n 2	05/07/2019 1440	0 05/07/2019 1550) LXM
Total Dissolved Solids (Residue, Filteral	ole)-SM2540 C								
Total Dissolved Solids (Residue, Filterable)	900		20		mg/I	L 1	05/02/2019 0746	5 05/08/2019 1430) EJ
Cyanide-SM4500-CN BE									
Cyanide	ND		0.10		mg/I	_ 1	05/01/2019 0900	05/02/2019 154:	5 EJ
Silica-SM4500-SiO2 C									
Silica	23		10		mg/I	5	04/30/2019 1120	0 04/30/2019 1450) CR

Client: Brown & Caldwell Client Sample ID: M57R-0

Project:Ground Water Monitoring 1Collection Date/Time: 04/26/2019 1010Work Order:19D0679Matrix: Ground WaterLab Sample ID:19D0679-01Order Name: Florence Copper

Analyses	Result	PRL	PQL	Qual	Units DF	Prep Date	Analysis Date	Analyst
Volatile Organic Compounds by GC	C/MS-SW8260B							
Benzene	ND		0.50		ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Carbon disulfide	ND		2.0	V1	ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Ethylbenzene	ND		0.50		ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Naphthalene	ND		2.0		ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
n-octane	ND		0.50	V1	ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Toluene	2.2		0.50		ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Xylenes, Total	ND		1.5		ug/L 1	04/29/2019 091	7 04/29/2019 2030) KP
Surr: 4-Bromofluorobenzene	100	70-130			%REC 1	04/29/2019 091	7 04/29/2019 2030) KP
Surr: Dibromofluoromethane	116	70-130			%REC 1	04/29/2019 091	7 04/29/2019 2030) KP
Surr: Toluene-d8	108	70-130			%REC 1	04/29/2019 091	7 04/29/2019 2030) KP

Client:Brown & CaldwellClient Sample ID: Trip BlankProject:Ground Water Monitoring 1Collection Date/Time: 04/26/2019 0000

Work Order:19D0679Matrix: Trip BlankLab Sample ID:19D0679-02Order Name: Florence Copper

Analyses	Result	PRL	PQL	Qual	Units D	F	Prep Date	Analysis Date	Analyst
Volatile Organic Compounds by GC/	MS-SW8260B								
Benzene	ND		0.50		ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Carbon disulfide	ND		2.0	V1	ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Ethylbenzene	ND		0.50		ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Naphthalene	ND		2.0		ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
n-octane	ND		0.50	V1	ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Toluene	ND		0.50		ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Xylenes, Total	ND		1.5		ug/L	1	04/29/2019 091	7 04/29/2019 211	1 KP
Surr: 4-Bromofluorobenzene	91	70-130			%REC	1	04/29/2019 091	7 04/29/2019 2111	KP
Surr: Dibromofluoromethane	104	70-130			%REC	1	04/29/2019 091	7 04/29/2019 2111	KP
Surr: Toluene-d8	99	70-130			%REC	1	04/29/2019 091	7 04/29/2019 2111	KP

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1904292 - E 200.7 (4.4)										
Blank (1904292-BLK1)				Prepared &	Analyzed:	05/01/2019				
Calcium	ND	4.0	mg/L							
Iron	ND	0.30	mg/L							
Magnesium	ND	3.0	mg/L							
Potassium	ND	5.0	mg/L							
Sodium	ND	5.0	mg/L							
LCS (1904292-BS1)				Prepared &	Analyzed:	05/01/2019				
Calcium	11	4.0	mg/L	10.00		111	85-115			
Iron	1.1	0.30	mg/L	1.000		107	85-115			
Magnesium	11	3.0	mg/L	10.00		105	85-115			
Potassium	11	5.0	mg/L	10.00		106	85-115			
Sodium	11	5.0	mg/L	10.00		110	85-115			
LCS Dup (1904292-BSD1)				Prepared &	Analyzed:	05/01/2019				
Calcium	10	4.0	mg/L	10.00		102	85-115	8	20	
Iron	1.0	0.30	mg/L	1.000		101	85-115	5	20	
Magnesium	10	3.0	mg/L	10.00		100	85-115	5	20	
Potassium	9.8	5.0	mg/L	10.00		98	85-115	8	20	
Sodium	11	5.0	mg/L	10.00		108	85-115	2	20	
Matrix Spike (1904292-MS1)	Sour	ce: 19D0652-	-02	Prepared &	Analyzed:	05/01/2019				
Calcium	120	4.0	mg/L	10.00	120	66	70-130			M3
Iron	1.0	0.30	mg/L	1.000	0.049	96	70-130			
Magnesium	34	3.0	mg/L	10.00	24	97	70-130			
Potassium	15	5.0	mg/L	10.00	5.1	96	70-130			
Sodium	160	5.0	mg/L	10.00	150	45	70-130			M3
Matrix Spike (1904292-MS2)	Sour	ce: 19D0653-	-01	Prepared &	Analyzed:	05/01/2019				
Calcium	130	4.0	mg/L	10.00	120	28	70-130			M3
Iron	1.7	0.30	mg/L	1.000	0.76	94	70-130			
Magnesium	18	3.0	mg/L	10.00	9.4	90	70-130			
Potassium	13	5.0	mg/L	10.00	4.5	90	70-130			
Sodium	230	5.0	mg/L	10.00	230	NR	70-130			M3
Batch 1904325 - E 200.8 (5.4)										

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1904325 - E 200.8 (5.4)										
Blank (1904325-BLK1)				Prepared &	Analyzed: (05/01/2019				
Aluminum	ND	0.0400	mg/L							
Antimony	ND	0.00050	mg/L							
Arsenic	ND	0.00050	mg/L							
Barium	ND	0.00050	mg/L							
Beryllium	ND	0.00025	mg/L							
Cadmium	ND	0.00025	mg/L							
Chromium	ND	0.00050	mg/L							
Cobalt	ND	0.00025	mg/L							
Copper	ND	0.00050	mg/L							
Lead	ND	0.00050	mg/L							
Manganese	ND	0.00025	mg/L							
Nickel	ND	0.00050	mg/L							
Selenium	ND	0.0015	mg/L							
Thallium	ND	0.00050	mg/L							
Zinc	ND	0.040	mg/L							
LCS (1904325-BS1)				Prepared &	Analyzed: (05/01/2019				
Aluminum	0.0952	0.0400	mg/L	0.1000		95	85-115			
Antimony	0.048	0.00050	mg/L	0.05000		95	85-115			
Arsenic	0.048	0.00050	mg/L	0.05000		96	85-115			
Barium	0.049	0.00050	mg/L	0.05000		99	85-115			
Beryllium	0.048	0.00025	mg/L	0.05000		96	85-115			
Cadmium	0.049	0.00025	mg/L	0.05000		97	85-115			
Chromium	0.048	0.00050	mg/L	0.05000		96	85-115			
Cobalt	0.048	0.00025	mg/L	0.05000		95	85-115			
Copper	0.048	0.00050	mg/L	0.05000		96	85-115			
Lead	0.049	0.00050	mg/L	0.05000		99	85-115			
Manganese	0.049	0.00025	mg/L	0.05000		97	85-115			
Nickel	0.049	0.00050	mg/L	0.05000		97	85-115			
Selenium	0.049	0.0015	mg/L	0.05000		97	85-115			
Thallium	0.050	0.00050	mg/L	0.05000		99	85-115			
Zinc	0.099	0.040	mg/L	0.1000		99	85-115			

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Qual
Batch 1904325 - E 200.8 (5.4)										
LCS Dup (1904325-BSD1)				Prepared &	Analyzed: (05/01/2019				
Aluminum	0.0948	0.0400	mg/L	0.1000		95	85-115	0.4	20	
Antimony	0.047	0.00050	mg/L	0.05000		94	85-115	1	20	
Arsenic	0.048	0.00050	mg/L	0.05000		96	85-115	0.06	20	
Barium	0.049	0.00050	mg/L	0.05000		99	85-115	0.1	20	
Beryllium	0.048	0.00025	mg/L	0.05000		96	85-115	0.7	20	
Cadmium	0.048	0.00025	mg/L	0.05000		96	85-115	1	20	
Chromium	0.048	0.00050	mg/L	0.05000		96	85-115	0.9	20	
Cobalt	0.047	0.00025	mg/L	0.05000		95	85-115	0.8	20	
Copper	0.048	0.00050	mg/L	0.05000		96	85-115	0.7	20	
Lead	0.048	0.00050	mg/L	0.05000		97	85-115	2	20	
Manganese	0.048	0.00025	mg/L	0.05000		96	85-115	1	20	
Nickel	0.048	0.00050	mg/L	0.05000		97	85-115	0.7	20	
Selenium	0.049	0.0015	mg/L	0.05000		97	85-115	0.3	20	
Thallium	0.049	0.00050	mg/L	0.05000		97	85-115	2	20	
Zinc	0.099	0.040	mg/L	0.1000		99	85-115	0.3	20	
Matrix Spike (1904325-MS1)	So	urce: 19D0679	-01	Prepared &	Analyzed: (05/01/2019				
Aluminum	0.124	0.200	mg/L	0.1000	ND	124	70-130			
Antimony	0.049	0.00050	mg/L	0.05000	0.00056	97	70-130			
Arsenic	0.061	0.00050	mg/L	0.05000	0.0057	110	70-130			
Barium	0.074	0.00050	mg/L	0.05000	0.024	99	70-130			
Beryllium	0.046	0.0013	mg/L	0.05000	ND	91	70-130			
Cadmium	0.045	0.00025	mg/L	0.05000	ND	90	70-130			
Chromium	0.055	0.00050	mg/L	0.05000	0.0026	105	70-130			
Cobalt	0.050	0.00025	mg/L	0.05000	0.00048	98	70-130			
Copper	0.056	0.00050	mg/L	0.05000	0.0094	93	70-130			
Lead	0.050	0.00050	mg/L	0.05000	0.00019	99	70-130			
Manganese	0.13	0.00025	mg/L	0.05000	0.082	92	70-130			
Nickel	0.051	0.00050	mg/L	0.05000	0.0030	96	70-130			
Selenium	0.061	0.0015	mg/L	0.05000	0.0041	113	70-130			
Thallium	0.048	0.00050	mg/L	0.05000	0.000079	97	70-130			
Zinc	0.11	0.040	mg/L	0.1000	0.018	90	70-130			
Batch 1905075 - E200.8 (5.4)										
Blank (1905075-BLK1)				Prepared: 05	5/07/2019 A	nalvzed: N	5/08/2019			
Uranium	ND	0.00050	mg/L	1 repared. 0.		maryzeu. U	5,00,2019			
		*********	8							
LCS (1905075-BS1)		0.5		Prepared: 05	5/0 ⁻ 7/2019 A					
Uranium	0.049	0.00050	mg/L	0.05000		98	85-115			
LCS Dup (1905075-BSD1)				Prepared: 05	5/07/2019 A	nalyzed: 0	5/08/2019			
Uranium	0.049	0.00050	mg/L	0.05000		99	85-115	0.2	20	
Matrix Spike (1905075-MS1)	So	urce: 19E0119-	-01	Prepared: 05	5/07/2019 A	nalyzed: 0	5/08/2019			
Uranium	0.062	0.00050	mg/L	0.05000	0.0043	116	70-130			
Batch 1905110 - E 245.1			-							

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1905110 - E 245.1										
Blank (1905110-BLK1)				Prepared &	Analyzed: (5/09/2019				
Mercury	0.00016	0.0010	mg/L							
LCS (1905110-BS1)				Prepared &	Analyzed: (5/09/2019				
Mercury	0.0049	0.0010	mg/L	0.005000		97	85-115			
LCS Dup (1905110-BSD1)				Prepared &	Analyzed: (5/09/2019				
Mercury	0.0044	0.0010	mg/L	0.005000		87	85-115	11	20	
Matrix Spike (1905110-MS1)	Sour	ce: 19D0679-	01	Prepared &	Analyzed: (5/09/2019				
Mercury	0.0052	0.0010	mg/L	0.005000	0.00014	101	85-115			
Matrix Spike Dup (1905110-MSD1)	Sour	ce: 19D0679-	01	Prepared &	Analyzed: (5/09/2019				
Mercury	0.0053	0.0010	mg/L	0.005000	0.00014	103	85-115	2	20	

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qual
Batch 1904317 - E150.1										
Duplicate (1904317-DUP1)	So	urce: 19D0679-	01	Prepared &	Analyzed:	04/26/2019				
pH (pH Units)	8.0		-	•	8.0			0.4	200	H5
Temperature (°C)	23		-		23			0	200	H5
Batch 1904345 - SM4500-SiO2 C										
Blank (1904345-BLK1)				Prepared &	Analyzed:	04/30/2019				
Silica	ND	2.0	mg/L							
LCS (1904345-BS1)				Prepared &	Analyzed:	04/30/2019				
Silica	8.0	2.0	mg/L	8.000		100	90-110			
LCS Dup (1904345-BSD1)				Prepared &	Analyzed:	04/30/2019				
Silica	8.0	2.0	mg/L	8.000		100	90-110	0.2	20	
Matrix Spike (1904345-MS1)	So	urce: 19D0679-	01	Prepared &	Analyzed:	04/30/2019				
Silica	67	10	mg/L	40.00	23	110	85-115			
Matrix Spike Dup (1904345-MSD1)	So	urce: 19D0679-	01	Prepared &	Analyzed:	04/30/2019				
Silica	66	10	mg/L	40.00	23	107	85-115	2	20	
Batch 1905004 - SM2320B										
Blank (1905004-BLK1)				Prepared &	Analyzed:	04/30/2019				
Alkalinity, Bicarbonate (As CaCO3)	ND	2.0	mg/L							
Alkalinity, Total (As CaCO3)	ND	2.0	mg/L							
LCS (1905004-BS1)				Prepared &	Analyzed:	04/30/2019				
Alkalinity, Total (As CaCO3)	240	2.0	mg/L	250.0		95	90-110			
LCS Dup (1905004-BSD1)				Prepared &	Analyzed:	04/30/2019				
Alkalinity, Total (As CaCO3)	240	2.0	mg/L	250.0		96	90-110	0.8	10	
Matrix Spike (1905004-MS1)	So	urce: 19D0672-	04	Prepared &	Analyzed:	04/30/2019				
Alkalinity, Total (As CaCO3)	340	2.0	mg/L	250.0	96	98	70-130			
Matrix Spike Dup (1905004-MSD1)	So	urce: 19D0672-	04	Prepared &	Analyzed:	04/30/2019				
Alkalinity, Total (As CaCO3)	340	2.0	mg/L	250.0	96	98	70-130	0	10	
Batch 1905015 - SM4500-CN BE										
Blank (1905015-BLK1)				Prepared: 05	5/01/2019 A	Analyzed: 0	5/02/2019			
Cyanide	ND	0.10	mg/L							
LCS (1905015-BS1)				Prepared: 05	5/01/2019 A	Analyzed: 0	5/02/2019			
Cyanide	2.0	0.10	mg/L	2.000		100	85-115			
LCS Dup (1905015-BSD1)				Prepared: 05	5/01/2019 A	Analyzed: 0	5/02/2019			
Cyanide	2.2	0.10	mg/L	2.000		108	85-115	8	15	
Matrix Spike (1905015-MS1)	So	urce: 19D0679-	01	Prepared: 05	5/01/2019 A	Analyzed: 0	5/02/2019			
Cyanide	2.1	0.10	mg/L	2.000	ND	107	80-120			
Matrix Spike Dup (1905015-MSD1)	So	urce: 19D0679-	01	Prepared: 05	5/01/2019 A	Analyzed: 0	5/02/2019			
Cyanide	2.1	0.10	mg/L	2.000	ND	103	80-120	3	15	

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1905016 - SM2540 C										
Duplicate (1905016-DUP1)	Sour	ce: 19D0662	2-06	Prepared: 0	5/02/2019 A	nalyzed: 0	5/08/2019			
Total Dissolved Solids (Residue, Filterable)	140	20	mg/L		150			5	5	
Duplicate (1905016-DUP2)	Sour	ce: 19D0662	2-19	Prepared: 0	5/02/2019 A	nalyzed: 0	5/08/2019			
Total Dissolved Solids (Residue, Filterable)	540	20	mg/L		530			2	5	
Batch 1905077 - SM2510 B										
LCS (1905077-BS1)				Prepared &	Analyzed: (05/07/2019	ı			
Conductivity	150	0.10	μmhos/cm	141.2		103	0-200			
LCS Dup (1905077-BSD1)				Prepared &	Analyzed: (05/07/2019				
Conductivity	140	0.10	μmhos/cm	141.2		102	0-200	1	200	
Duplicate (1905077-DUP1)	Sour	ce: 19D0679	9-01	Prepared &	Analyzed: (05/07/2019				
Conductivity	1500	0.20	μmhos/cm		1500			2	10	
Duplicate (1905077-DUP2)	Sour	ce: 19E0058	B-03	Prepared &	Analyzed: (05/07/2019	ı			
Conductivity	800	0.10	μmhos/cm		810			0.9	10	

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1904327 - SW8260B										
Blank (1904327-BLK1)				Prepared &	Analyzed: (04/29/2019				
Benzene	ND	0.50	ug/L							
Carbon disulfide	ND	2.0	ug/L							
Ethylbenzene	ND	0.50	ug/L							
Naphthalene	ND	2.0	ug/L							
n-octane	ND	0.50	ug/L							
Toluene	ND	0.50	ug/L							
Xylenes, Total	ND	1.5	ug/L							
Surrogate: 4-Bromofluorobenzene	25.0		ug/L	25.00		100	70-130			
Surrogate: Dibromofluoromethane	26.2		ug/L	25.00		105	70-130			
Surrogate: Toluene-d8	27.0		ug/L	25.00		108	70-130			
LCS (1904327-BS1)				Prepared &	Analyzed: (04/29/2019				
1,1-Dichloroethene	27		ug/L	25.00		110	70-130			
Benzene	26		ug/L	25.00		103	70-130			
Chlorobenzene	26		ug/L	25.00		103	70-130			
Toluene	26		ug/L	25.00		102	70-130			
Trichloroethene	24		ug/L	25.00		97	70-130			
Surrogate: 4-Bromofluorobenzene	25.5		ug/L	25.00		102	70-130			
Surrogate: Dibromofluoromethane	25.6		ug/L	25.00		102	70-130			
Surrogate: Toluene-d8	25.3		ug/L	25.00		101	70-130			
LCS Dup (1904327-BSD1)				Prepared &	Analyzed: (04/29/2019				
1,1-Dichloroethene	28		ug/L	25.00		111	70-130	1	30	
Benzene	26		ug/L	25.00		105	70-130	3	30	
Chlorobenzene	27		ug/L	25.00		108	70-130	5	30	
Toluene	27		ug/L	25.00		107	70-130	5	30	
Trichloroethene	25		ug/L	25.00		101	70-130	4	30	
Surrogate: 4-Bromofluorobenzene	25.1		ug/L	25.00		101	70-130			
Surrogate: Dibromofluoromethane	26.0		ug/L	25.00		104	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.00		106	70-130			
Matrix Spike (1904327-MS1)	Sour	ce: 19D0652-	-01	Prepared &	Analyzed: (04/29/2019				
1,1-Dichloroethene	32	<u></u>	ug/L	25.00	0.0	126	70-130			
Benzene	29		ug/L	25.00	0.010	118	70-130			
Chlorobenzene	28		ug/L	25.00	0.0	113	70-130			
Toluene	32		ug/L	25.00	2.9	115	70-130			
Trichloroethene	27		ug/L	25.00	0.0	108	70-130			
Surrogate: 4-Bromofluorobenzene	24.8		ug/L	25.00		99	70-130			
Surrogate: Dibromofluoromethane	28.0		ug/L	25.00		112	70-130			
Surrogate: Toluene-d8	26.5		ug/L	25.00		106	70-130			

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit U	nits	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1904327 - SW8260B										
Matrix Spike Dup (1904327-MSD1)	Sour	ce: 19D0652-01		Prepared &	Analyzed:	04/29/2019)			
1,1-Dichloroethene	29	uş	g/L	25.00	0.0	116	70-130	8	30	
Benzene	27	uş	g/L	25.00	0.010	110	70-130	7	30	
Chlorobenzene	26	uş	g/L	25.00	0.0	106	70-130	7	30	
Toluene	29	uş	g/L	25.00	2.9	105	70-130	8	30	
Trichloroethene	24	ug	g/L	25.00	0.0	98	70-130	10	30	
Surrogate: 4-Bromofluorobenzene	23.3	и	g/L	25.00		93	70-130			
Surrogate: Dibromofluoromethane	26.4	и	g/L	25.00		106	70-130			
Surrogate: Toluene-d8	25.2	и	g/L	25.00		101	70-130			

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual		
Batch 1904305 - E300.0 (2.1)												
Blank (1904305-BLK1)		Prepared & Analyzed: 04/26/2019										
Chloride	ND	1.0	mg/L									
Fluoride	ND	0.50	mg/L									
Nitrogen, Nitrate (As N)	ND	0.50	mg/L									
Nitrogen, Nitrite (As N)	ND	0.10	mg/L									
Sulfate	ND	5.0	mg/L									
LCS (1904305-BS1)				Prepared &	Analyzed: (04/26/2019	1					
Chloride	12	1.0	mg/L	12.50		94	90-110					
Fluoride	2.0	0.50	mg/L	2.000		99	90-110					
Nitrogen, Nitrate (As N)	4.8	0.50	mg/L	5.000		95	90-110					
Nitrogen, Nitrite (As N)	2.4	0.10	mg/L	2.500		97	90-110					
Sulfate	12	5.0	mg/L	12.50		97	90-110					
LCS Dup (1904305-BSD1)				Prepared &								
Chloride	12	1.0	mg/L	12.50		95	90-110	0.7	10			
Fluoride	2.0	0.50	mg/L	2.000		100	90-110	0.3	10			
Nitrogen, Nitrate (As N)	4.8	0.50	mg/L	5.000		96	90-110	0.7	10			
Nitrogen, Nitrite (As N)	2.4	0.10	mg/L	2.500		98	90-110	0.7	10			
Sulfate	12	5.0	mg/L	12.50		97	90-110	0.4	10			
Matrix Spike (1904305-MS1)	Sou	rce: 19D0672-	-02	Prepared & Analyzed: 04/26/2019								
Chloride	460	20	mg/L	250.0	280	71	80-120			M3		
Sulfate	460	100	mg/L	250.0	200	102	80-120					
Matrix Spike (1904305-MS2)	Sou	rce: 19D0672-	-03	Prepared & Analyzed: 04/26/2019								
Fluoride	2.7	0.50	mg/L	2.000	0.62	103	80-120					
Nitrogen, Nitrate (As N)	5.1	0.50	mg/L	5.000	0.41	93	80-120					
Nitrogen, Nitrite (As N)	2.2	0.10	mg/L	2.500	ND	89	80-120					
Matrix Spike (1904305-MS3)	Sou	rce: 19D0482-	-01	Prepared: 04								
Chloride	20	1.0	mg/L	12.50	6.4	105	80-120					
Fluoride	2.5	0.50	mg/L	2.000	0.61	95	80-120					
Nitrogen, Nitrate (As N)	6.4	0.50	mg/L	5.000	1.4	100	80-120					
Nitrogen, Nitrite (As N)	2.5	0.10	mg/L	2.500	0.053	99	80-120					
Sulfate	15	5.0	mg/L	12.50	3.9	91	80-120					
Matrix Spike Dup (1904305-MSD1)	Sou	Source: 19D0672-02		Prepared &	Analyzed: (04/26/2019						
Chloride	460	20	mg/L	250.0	280	71	80-120	0.1	10	M3		
Sulfate	410	100	mg/L	250.0	200	86	80-120	10	10			
Matrix Spike Dup (1904305-MSD2)	Sou	rce: 19D0672-	-03	Prepared & Analyzed: 04/26/2019								
Fluoride	2.7	0.50	mg/L	2.000	0.62	104	80-120	0.9	10			
Nitrogen, Nitrate (As N)	5.1	0.50	mg/L	5.000	0.41	94	80-120	0.9	10			
Nitrogen, Nitrite (As N)	2.2	0.10	mg/L	2.500	ND	90	80-120	1	10			

Client: Brown & Caldwell

Project: Ground Water Monitoring 1

Work Order: 19D0679 **Date Received:** 04/26/2019

QC Summary

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch 1904305 - E300.0 (2.1)										
Matrix Spike Dup (1904305-MSD3)	Sour	ce: 19D0482-	-01	Prepared: 0-	4/26/2019 A	Analyzed: 0	5/01/2019			
Chloride	20	1.0	mg/L	12.50	6.4	106	80-120	0.7	10	
Fluoride	2.5	0.50	mg/L	2.000	0.61	95	80-120	0.6	10	
Nitrogen, Nitrate (As N)	6.4	0.50	mg/L	5.000	1.4	100	80-120	0.2	10	
Nitrogen, Nitrite (As N)	2.5	0.10	mg/L	2.500	0.053	100	80-120	0.5	10	
Sulfate	15	5.0	mg/L	12.50	3.9	91	80-120	0.2	10	

T U R N E R

2445 N. Coyote Drive, Suite 104 Tucson, Arizona 85745 (520) 882-5880 Fax: (520) 882-9788 www.turnerlabs.com

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

TURNER WORK ORDER # 1900679 DATE 4/26/2019 PAGE 1 OF

PROJECT NAME_	Florence (Copper #						CIR	CLE /	ANAI	YSIS	REQ	UES	TED .	AND/	OR CH	ECK 1	HE A	PPRO	PRIA	TE B	ОХ		
CONTACT NAME	: Barb Syl	vester			RS						-		-									П		
	MPANY NAME : Brown and Caldwell DRESS : 2 N Central Ave, Suite 1600					(Field Filtered)	Filtered)				ety sub)	Alpha >12	idsSafety)	(qns	(qr									
CITY <u>Phoenix</u> STATE <u>AZ</u> ZIP CODE <u>85004</u> PHONE <u>602-567-3894</u> FAX				NUMBER OF CONTAINERS	- list	Uranium (not Filt	- list	(ee)	list	G.Alpha, Beta, (RadSafety sub)	Uranium activity if G. Alpha >12	228, Ra-Tot (RadsSafety)	Radon 222 (RadSafety sub)	TPH-D (TestAmerica Sub)										
SAMPLER'S SIGNATURE			N	Metals	I Uran	Inorganics	Cyanide (free)	Organics - list	pha, B	nium a	26, 228	on 222	-D (Tes											
SAMPLE I.D.	DATE	TIME	LAB I.D.	SAMPLE MATRIX*		Diss	Total	Inor	Cyar	Org	G.Al	Urai	Ra226,	Rad	TPH									
M57R-0	4/26/19	1010		GW ≱ GW	12	X	X	X	X	X	X	X.	K	X	X		-	-						-
-140				GW	+					/\											7		\exists	
				GW																				
				GW																				
1				GW																				
				GW													n n							
				GW																				
				GW						1					110									
				GW					1	- 1		-				-					-	-	\rightarrow	
	21			GW	LID DE	CHIE				DEDOD	TREO	UDEM	ENITE		1207	DICE IN	FORM	MATIO		CANAD	I E DE	CEIDT		-
1. RELINOUISHED BY Signardy Printed Mappe Firmy Date/Time	Overt Cald	Signature Region Next day		d (approx	D REQUIREMENTS: 1: Day 5 Day* nary Results To:				REPORT REQUIREMENTS: X I. Routine Report II. Report (includes DUP,MS,MSD, as equired, may be charged as samples) III. Date Validation Report (Includes III Raw Data) dd 10% to invoice INVOICE INFO								_N Total Containers					-		
RELINQUISHED BY:		4. RECEIVED	TY:		LEGI	END			SPEC	CIAL	INSTI	RUCT	ION	s/co	MME	NTS:								
DW = DRINKI		NKING WATER				Compliance Analysis: Yes N			No C	ustody S	eals		Prese	ervation	Confir	matio	mation 🔯							
Printed Name	Printed Name Printed Name TURNER LABORATORIES, INC. SG = SLUDGE		NUWA	IER			ADE	Q For	ms:] Yes		No C	ontaine	Intact	B	Appr	opriate	Head S	pace	Ī	40		
T-C			E				Mail	ADE	Q For	ms:[Yes			OC/Lab					thin Ho	old Tim	ie [90		
7-26-79 65 Date/Time	242	Firm 4/76/9 ISYZ SL = SOIL ST = STORMW WW = WASTEN						3	36	stte	tes	+	s R	90	50	ter	46	Y	BC					

"See list w/coc

Florence Copper Project New APP/UIC Wells - Ambient Monitoring

Inorganics -	500 ml	Poly	Unpreserved

pH (lab) EC (lab)

Bicarbonate Alkalinity Carbonate Alkalinity Hydroxide Alkalinity Total Alkalinity

Chloride Fluoride

Nitrate as N (48-hr Hold time) Nitrite as N (48-hr Hold time)

Sulfate
Total Dissolved Solids
Cation/Anion Balance

500 ml NaOH

Cyanide (free)

250 ml H2SO4

Ammonia

Organics

3 HCl Voas Benzene

Ethylbenzene Toluene

Total Xylene Napthalene Octane

Carbon Disulfide

2 1L Amber to TestAmerica

Extractable Fuel Hydrocarbons (Diesel Range Organics)

Filtered Dissolved Metals - 250 ml NO3

Aluminum
Antimony
Arsenic
Barium
Beryllium
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead

Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Sodium

UNFiltered Total Metals - 250 ml NO3

Total Urnanium

Thallium

Zinc

Radiochems to Radiation Safety

1G unpreserved poly

Gross Alpha Gross Beta

Radium 226+228

Uranium istotopes (if G. Alpha >12.0)

Adjusted Alpha (if G. Alpha >12.0)

2 blank Voas - 72 Hour Hold Time

Radon

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Phoenix 4625 East Cotton Ctr Blvd Suite 189 Phoenix, AZ 85040

Tel: (602)437-3340

Laboratory Job ID: 550-121951-1 Client Project/Site: 19D0679

For:

Turner Laboratories, Inc. 2445 North Coyote Drive Suite 104
Tucson, Arizona 85745

Attn: Kevin Brim

Sen Daken

Authorized for release by: 5/6/2019 3:18:14 PM

Ken Baker, Project Manager II (602)659-7624

ken.baker@testamericainc.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Δ

5

6

8

9

. .

12

13

Ш

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Chain of Custody	14
Receint Checklists	15

2

4

5

9

44

12

11

1.

Definitions/Glossary

Client: Turner Laboratories, Inc. Job ID: 550-121951-1

Project/Site: 19D0679

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description**

E8 Analyte reported to MDL per project specification. Target analyte was not detected in the sample.

N1 See case narrative.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

3

6

Case Narrative

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1 Project/Site: 19D0679

Job ID: 550-121951-1

Laboratory: Eurofins TestAmerica, Phoenix

Narrative

Job Narrative 550-121951-1

Comments

No additional comments.

Receipt

The sample was received on 4/30/2019 12:20 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

GC Semi VOA

Method(s) 8015D: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 550-176732 and analytical batch 550-176877. An acceptable laboratory control sample (LCS) and laboratory control sample duplicate was reported. The analytes in the sample(s) were flagged with an N1 data qualifier.

Method(s) 8015D: The surrogate in the following CCV: (CCV 550-176877/18) and (CCVRT 550-176877/2), recovered outside of 8015D %D criteria but within historical limits, all affected samples have been N1 flagged and reported. The sample surrogate was recovered within method limits therefore the results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with 550-176732.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Sample Summary

Client: Turner Laboratories, Inc. Project/Site: 19D0679

Job ID: 550-121951-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
550-121951-1	19D0679-01	Drinking Water	04/26/19 10:10	04/30/19 12:20

Detection Summary

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1

Project/Site: 19D0679

Client Sample ID: 19D0679-01

Lab Sample ID: 550-121951-1

No Detections.

3

7

10

11

12

14

Client Sample Results

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1

Project/Site: 19D0679

Client Sample ID: 19D0679-01 Lab Sample ID: 550-121951-1

Date Collected: 04/26/19 10:10

Matrix: Drinking Water

Date Received: 04/30/19 12:20

Method: 8015D - Diesel	Range Organics (D	ORO) (GC							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ORO (C22-C32)	ND I	E8 N1	0.20	0.13	mg/L		05/02/19 12:04	05/03/19 16:50	1
DRO (C10-C22)	ND I	E8 N1	0.10	0.098	mg/L		05/02/19 12:04	05/03/19 16:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl (Surr)	81		37 - 130				05/02/19 12:04	05/03/19 16:50	1

_

5

7

9

11

16

14

Surrogate Summary

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1

Project/Site: 19D0679

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Drinking Water Prep Type: Total/NA

Surrogate Legend

OTPH = o-Terphenyl (Surr)

Method: 8015D - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		ОТРН	
Lab Sample ID	Client Sample ID	(37-130)	
LCS 550-176732/4-A	Lab Control Sample	75	
LCSD 550-176732/5-A	Lab Control Sample Dup	78	
MB 550-176732/1-A	Method Blank	77	
Surrogate Legend			
OTPH = o-Terphenyl (S	Surr)		

Eurofins TestAmerica, Phoenix

2

QC Sample Results

Client: Turner Laboratories, Inc. Job ID: 550-121951-1

Project/Site: 19D0679

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 550-176732/1-A

Lab Sample ID: LCS 550-176732/4-A

Matrix: Water

Analysis Batch: 176877

Prep Type: Total/NA

3

10

15

Prep Batch: 176732

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ORO (C22-C32)	ND	E8	0.20	0.13	mg/L		05/02/19 12:04	05/03/19 15:05	1
DRO (C10-C22)	ND	E8	0.10	0.098	mg/L		05/02/19 12:04	05/03/19 15:05	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl (Surr) 37 - 130 05/02/19 12:04 05/03/19 15:05 77

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 176732

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits ORO (C22-C32) 1.60 1.43 mg/L 90 61 - 117 DRO (C10-C22) 0.400 0.394 99 52 - 150 mg/L

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl (Surr) 37 - 130 75

Lab Sample ID: LCSD 550-176732/5-A

Matrix: Water

Matrix: Water

Analysis Batch: 176877

Analysis Batch: 176877

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 176732

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ORO (C22-C32)	1.60	1.48		mg/L		92	61 - 117	3	20
DRO (C10-C22)	0.400	0.395		mg/L		99	52 - 150	0	22

LCSD LCSD

%Recovery Qualifier Surrogate Limits 37 - 130 o-Terphenyl (Surr) 78

Eurofins TestAmerica, Phoenix

QC Association Summary

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1

Project/Site: 19D0679

GC Semi VOA

Prep Batch: 176732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
550-121951-1	19D0679-01	Total/NA	Drinking Water	3510C	
MB 550-176732/1-A	Method Blank	Total/NA	Water	3510C	
LCS 550-176732/4-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 550-176732/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 176877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
550-121951-1	19D0679-01	Total/NA	Drinking Water	8015D	176732
MB 550-176732/1-A	Method Blank	Total/NA	Water	8015D	176732
LCS 550-176732/4-A	Lab Control Sample	Total/NA	Water	8015D	176732
LCSD 550-176732/5-A	Lab Control Sample Dup	Total/NA	Water	8015D	176732

1

2

3

6

9

10

11

16

14

Lab Chronicle

Client: Turner Laboratories, Inc.

Job ID: 550-121951-1

Project/Site: 19D0679

Client Sample ID: 19D0679-01

Date Collected: 04/26/19 10:10

Date Received: 04/30/19 12:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			176732	05/02/19 12:04	HKT	TAL PHX
Total/NA	Analysis	8015D		1	176877	05/03/19 16:50	VMI	TAL PHX

Laboratory References:

TAL PHX = Eurofins TestAmerica, Phoenix, 4625 East Cotton Ctr Blvd, Suite 189, Phoenix, AZ 85040, TEL (602)437-3340

3

Lab Sample ID: 550-121951-1

Matrix: Drinking Water

4

5

7

9

11

12

14

Accreditation/Certification Summary

Client: Turner Laboratories, Inc. Job ID: 550-121951-1

Project/Site: 19D0679

Laboratory: Eurofins TestAmerica, Phoenix

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Nun	nber Expiration Date
Arizona	State Prog	gram	9	AZ0728	06-09-19 *
The following analytes the agency does not o	•	t, but the laboratory	is not certified by the	e governing authority	. This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyt	te	

Eurofins TestAmerica, Phoenix

Page 31 of 39

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Turner Laboratories, Inc.

Project/Site: 19D0679

MethodMethod DescriptionProtocolLaboratory8015DDiesel Range Organics (DRO) (GC)SW846TAL PHX3510CLiquid-Liquid Extraction (Separatory Funnel)SW846TAL PHX

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PHX = Eurofins TestAmerica, Phoenix, 4625 East Cotton Ctr Blvd, Suite 189, Phoenix, AZ 85040, TEL (602)437-3340

1

2

Job ID: 550-121951-1

3

4

O

7

8

9

11

40

13

14

SUBCONTRACT ORDER

Turner Laboratories, Inc.

19D0679

Sample ID: 19D0679-01 Drinking Water Sampled:04/26/2019 10:10

SENDING LABORATORY:

Turner Laboratories, Inc.

2445 N. Coyote Drive, Ste #104

Tucson, AZ 85745

Phone: 520.882.5880

Fax: 520.882.9788

Project Manager:

Kevin Brim

RECEIVING LABORATORY:

TestAmerica Phoenix

4625 East Cotton Center Boulevard Suite 189

Phoenix, AZ 85540

Phone:(602) 437-3340

Fax:

Please CC Kevin Brim

Kbrim@turnerlabs.com

Analysis

Expires

Laboratory ID

Comments

Containers Supplied:

8015D Sub

05/03/2019 10:10

8015D DRO and ORO Paramaters Only

10 11

12 13

Released By

Date

Received By

Received By

Page 1 of 1

Page 14 of 15

Page 33 of 39

Login Sample Receipt Checklist

Client: Turner Laboratories, Inc.

Job Number: 550-121951-1

Login Number: 121951 List Source: Eurofins TestAmerica, Phoenix

List Number: 1

Creator: Maycock, Lisa

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	False	Check done at department level as required.

1

5

7

9

11

12

14

Radiation Safety Engineering, Inc.

3245 N. WASHINGTON ST. CHANDLER, ARIZONA 85225-1121 Website: www.radsafe.com

(480) 897-9459 FAX (480) 892-5446

Radiochemical Activity in Water (pCi/L)

Turner Laboratories 2445 N. Coyote Drive, Ste. 104 Tucson, AZ 85745

Sampling Date: April 26, 2019 Sample Received: April 26, 2019 Analysis Completed: May 06, 2019

Sample ID	Gross Alpha Activity Method 600/00-02 (pCi/L)	Gross Beta Activity Method 900.0 (pCi/L)	Radium 226 Activity Method GammaRay HPGE (pCi/L)	Radium 228 Activity Method GammaRay HPGE (pCi/L)	Total Radium (pCi/L)
19D0679-01	9.0 ± 0.7	8.9 ± 1.4	< 0.5	< 0.7	< 0.7

	Date of Analysis	5/1/2019	4/30/2019	4/26/2019	4/26/2019	4/26/2019
--	------------------	----------	-----------	-----------	-----------	-----------

Robert L. Metzger, Ph.D., C.H.P.

5/6/2019 Date

Laboratory License Number AZ0462

Radiation Safety Engineering, Inc.

3245 N. WASHINGTON ST. • CHANDLER, ARIZONA 85225-1121 Website: www.radsafe.com

(480) 897-9459 FAX (480) 892-5446

Radiochemical Activity in Water (pCi/L)

Turner Laboratories 2445 N. Coyote Drive, Ste. 104 Tucson, AZ 85745

Sampling Date: April 26, 2019 Sample Received: April 26, 2019 Analysis Completed: May 06, 2019

Sample ID	²²² Radon Activity * Method 7500-Rn (pCi/L)
19D0679-01	484.6 ± 49.3
Date of Analysis	4/26/2019

^{*} Not an ADHS compliance item

5/6/2019

Robert L. Metzger, Ph.D., C.H.P. Laboratory License Number AZ0462

Arizona Department of Environmental Quality

Drinking Water Radionuclides-Adjusted Gross Alpha, Radium 226 & 228, Uranium Analysis Report ***Samples To Be Taken At Entry Point Into Distribution System (EPDS) Only***

	Z04	-		PWS N	ame:	Florence	Copper		
April 26, 201	9	10:10	(24 hour clock)	Barb Sy	lvester				
Sample Date		Sample Tir	me		Contact P	erson			
				602-567	7-3894				
Owner/Conta	ct Fax Num	ber		Owner/0	Contact P	hone Nu	mber		
Sample Colle EPDS #	ction Point								
Complian	e Sample	Type:							
Redu	iced Moni	itoring		Date	Q1 colle	ected:			
Quar	terly			Date	Q2 colle	cted:			
Com	posite of t	four quarter	ly samples	Date (Q3 colle	cted:			
				Date (Q4 colle	cted:			
		VII. 2. T. 1	***RADIOCHEN >>>To be filled out b	y laborato	ry perso	nnel<<			
		***Comb	ined Ilranium must be	Commence of the second of					
			oined Uranium must be	reported	in micr	ogram	s per liter***		
Analysis Method	MCL	Reporting Limit	Contaminant Name	Cont. Code	Analy Run D	ses .			
Method	MCL 15 pCi/L	Reporting	Contaminant	Cont.	Analy	ses .	Result		Exceed MCL
Method 500/00-02		Reporting	Contaminant Name	Cont. Code	Analy	ses Date			
Method 00/00-02		Reporting Limit	Contaminant Name Adjusted Gross Alpha	Cont. Code 4000	Analy Run D	vses Date	Result		
Method 500/00-02 7500 - Rn		Reporting Limit	Contaminant Name Adjusted Gross Alpha Gross Alpha	Cont. Code 4000 4002	Analy Run D	vses Date	Result 9.0 ± 0.7	— — µg/L	
Method 500/00-02 7500 - Rn	15 pCi/L	Reporting Limit	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon	Cont. Code 4000 4002 4004	Analy Run D	vses Date	Result 9.0 ± 0.7		
Method 500/00-02 7500 - Rn	15 pCi/L	Reporting Limit	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235	Cont. Code 4000 4002 4004 4006	Analy Run D	vses Date	Result 9.0 ± 0.7		
500/00-02 7500 - Rn	15 pCi/L 30 μg/L	Reporting Limit 3 pCi/L 1 µg/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238	Cont. Code 4000 4002 4004 4006 4007	Analy Run D	vses Date	Result 9.0 ± 0.7		
Method 600/00-02 7500 - Rn STM D6239	15 pCi/L	Reporting Limit 3 pCi/L 1 µg/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228)	Cont. Code 4000 4002 4004 4006 4007 4008	Analy Run D	7ses Date 019 019	Result 9.0 ± 0.7		
Method 600/00-02 7500 - Rn STM D6239	15 pCi/L 30 μg/L	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226	Cont. Code 4000 4002 4004 4006 4007 4008 4009	Analy Run E 5/1/20 4/26/2	019 019	9.0 ± 0.7 484.6 ± 49.3		
Method 600/00-02 7500 - Rn STM D6239	15 pCi/L 30 μg/L	Reporting Limit 3 pCi/L 1 µg/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228)	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010	Analy Run E 5/1/20 4/26/2	019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7		
Method 600/00-02 7500 - Rn STM D6239	15 pCi/L 30 μg/L	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030	Analy Run E 5/1/20 4/26/2 4/26/20 4/26/20	019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5		Exceed
Method 500/00-02 7500 - Rn STM D6239	15 pCi/L 30 μg/L	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030	Analy Run E 5/1/20 4/26/2 4/26/20 4/26/20	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5		
Method 500/00-02 7500 - Rn STM D6239 mmaRay HPGE	15 pCi/L 30 μg/L 5 pCi/L	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030	Analy Run E 5/1/20 4/26/2 4/26/20 4/26/20	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5		
Method 500/00-02 7500 - Rn STM D6239 mmaRay HPGE mmaRay HPGE ecimen Numb	15 pCi/L 30 μg/L 5 pCi/L er: RSE6	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L 2 pCi/L 2 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228 ***LABORATORY II >>To be filled out by la	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030	Analy Run E 5/1/20 4/26/2 4/26/20 4/26/20	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5		
Method 500/00-02 7500 - Rn STM D6239 mmaRay HPGE mmaRay HPGE decimen Numb b ID Number: b Name: R	15 pCi/L 30 μg/L 5 pCi/L er: RSE6 AZ04 adiation Safe	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L 2 pCi/L 2 pCi/L 2 pCi/L 3 pCi/L 4 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228 ***LABORATORY II	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030	Analy Run E 5/1/20 4/26/2 4/26/20 4/26/20	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5		
Method 600/00-02 7500 - Rn STM D6239 mmaRay HPGE mmaRay HPGE ecimen Numb b ID Number: b Name: R inted Name an	15 pCi/L 30 μg/L 5 pCi/L cer: RSE6 AZ04 adiation Safe	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L 2 pCi/L 2 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228 ***LABORATORY II	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030 NFORMA	Analy Run E 5/1/20 4/26/2 4/26/2 4/26/20 ATION*	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5 <0.7		
Method 600/00-02 7500 - Rn ASTM D6239 DESCRIPTION OF THE PROPERTY OF THE P	15 pCi/L 30 μg/L 5 pCi/L cer: RSE6 AZ04 adiation Safet d Phone Num	Reporting Limit 3 pCi/L 1 µg/L 1 pCi/L 1 pCi/L 1 pCi/L 2 pCi/L 2 pCi/L 2 pCi/L 3 pCi/L 4 pCi/L	Contaminant Name Adjusted Gross Alpha Gross Alpha Radon Combined Uranium Uranium 234 Uranium 235 Uranium 238 Combined Radium (226,228) Radium 226 Radium 228 ***LABORATORY II >>To be filled out by la Inc.	Cont. Code 4000 4002 4004 4006 4007 4008 4009 4010 4020 4030 NFORMA	Analy Run E 5/1/20 4/26/2 4/26/2 4/26/20 ATION*	019 019 019 019 019 019	Result 9.0 ± 0.7 484.6 ± 49.3 <0.7 <0.5 <0.7		

DWAR 6: 11/2007

Arizona Department of Environmental Quality Drinking Water Radionuclides-Adjusted Gross Alpha, Radium 226 & 228, Uranium Analysis Report ***Samples To Be Taken At Entry Point Into Distribution System (EPDS) Only***

PWS ID#: A	\Z04			PWS Na	ame: Floren	ce Copper	
April 26, 20	19 1	0:10	(24 hour clock)	Barb Syl	lvecter		
Sample Date	e S	Sample Time			Contact Person		
				***	1275		
Owner/Cont	act Fax Numl	per	-	602-567-	-3894 Contact Phone N	Jumbar	
				o when c	Somact I none I	dinber	
Sample Coll EPDS #							
— Complian	ce Sample	Type:					
-	uced Moni			Date (Q1 collected:		-11
Qua	rterly			Date (Q2 collected:		
Con	nposite of f	our quarterly s	samples	Date (Q3 collected:		
				Date (Q4 collected:		
			***RADIOCHE >>To be filled out d Uranium must b	by laborate	ory personne	 <<<	
	MCL		>>To be filled out	by laborated cont.	ory personne I in microgr Analyses	l<<< ams per liter***	Exceed
Method		***Combined Reporting	>>To be filled out I Uranium must b Contaminant	by laborated cont.	ory personne	l<<< ams per liter***	Exceed MCL
1ethod 00	MCL	***Combined Reporting Limit	>>To be filled out d Uranium must b Contaminant Name	by laborate oe reported Cont. A Code I	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Method 00	MCL 4 mrem	***Combined Reporting Limit 4 pCi/L	>>To be filled out d Uranium must b Contaminant Name Gross Beta	Cont. A	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Method 100	MCL 4 mrem	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L	>>To be filled out d Uranium must b Contaminant Name Gross Beta Tritium	Cont. A Code I 4100 4102	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Method 100	MCL 4 mrem 20,000 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L	>>To be filled out d Uranium must b Contaminant Name Gross Beta Tritium Strontium-89	Cont. A Code I 4100 4102 4172	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Method 900	MCL 4 mrem 20,000 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L	>>To be filled out d Uranium must b Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90	Cont. A Code I 4100 4102 4172 4174	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Analysis Method 900	MCL 4 mrem 20,000 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L	>>To be filled out d Uranium must b Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131	Cont. A Code I 4100 4102 4172 4174 4264	ory personne I in microgr Analyses Run Date	l<<< ams per liter***	
Method 900	MCL 4 mrem 20,000 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 1 pCi/L 10 pCi/L	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134	Cont. A Code H 4100 4102 4172 4174 4264 4270	ory personne. I in microgr. Analyses Run Date 4/30/2019	l<<< ams per liter***	
Method 900	MCL 4 mrem 20,000 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 1 pCi/L 10 pCi/L	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134	Cont. A Code II 4100 4102 4172 4174 4264 4270	ory personne I in microgr Analyses Run Date 4/30/2019	Result < 4 mrem	
Method 200 206	MCL 4 mrem 20,000 pCi/L 8 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 10 pCi/L *** >>>T	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134	Cont. A Code II 4100 4102 4172 4174 4264 4270	ory personne I in microgr Analyses Run Date 4/30/2019	Result < 4 mrem	
Method 200 206	MCL 4 mrem 20,000 pCi/L 8 pCi/L	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 10 pCi/L *** >>>T	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134	Cont. A Code II 4100 4102 4172 4174 4264 4270	ory personne I in microgr Analyses Run Date 4/30/2019	Result < 4 mrem	
Method 900 906 pecimen Num ab ID Number	MCL 4 mrem 20,000 pCi/L 8 pCi/L ber: RSE6215 7: AZ0462	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 10 pCi/L *** >>>T	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134 CELABORATORY To be filled out by less that the second of the s	Cont. A Code II 4100 4102 4172 4174 4264 4270	ory personne I in microgr Analyses Run Date 4/30/2019	Result < 4 mrem	
pecimen Num ab ID Number	MCL 4 mrem 20,000 pCi/L 8 pCi/L ber: RSE6215 r: AZ0462 Radiation Safet	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 10 pCi/L *** >>>T	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134 CEABORATORY To be filled out by lessed to the contaminant of t	Cont. A Code II 4100 4102 4172 4174 4264 4270 INFORMA laboratory p	ory personne I in microgr Analyses Run Date 4/30/2019	Result 4 mrem	
Method 900 906 specimen Num ab ID Number ab Name:	MCL 4 mrem 20,000 pCi/L 8 pCi/L 8 pCi/L AZ0462 Radiation Safet nd Phone Num 19D0679-01	***Combined Reporting Limit 4 pCi/L 1,000 pCi/L 10 pCi/L 2 pCi/L 1 pCi/L 10 pCi/L 7 pCi/L	>>To be filled out d Uranium must be Contaminant Name Gross Beta Tritium Strontium-89 Strontium-90 Iodine-131 Cesium-134 CEABORATORY To be filled out by lessed to the contaminant of t	Cont. A Code II 4100 4102 4172 4174 4264 4270 INFORMA laboratory p	ATION***	Result 4 mrem	

DWAR 6A: 11/2007

SUBCONTRACT ORDER

Turner Laboratories, Inc. 19D0679

SENDING LABORATORY:

Turner Laboratories, Inc.

2445 N. Coyote Drive, Ste #104

Tucson, AZ 85745 Phone: 520.882.5880 Fax: 520.882.9788

Project Manager: Kevin Brim

RECEIVING LABORATORY:

Radiation Safety Engineering, Inc.

3245 N. Washington St. Chandler, AZ 85225-1121 Phone :(480) 897-9459

Fax: (480) 892-5446

Please CC Kevin Brim &

Kbrim@turnerlabs.com

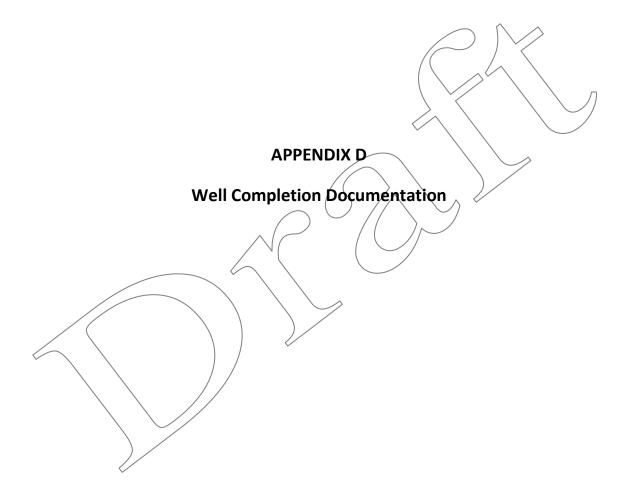
Analysis

Expires

Laboratory ID Comments

Sample ID: 19D0679-01 Drinking Water Sampled:04/26/2019 10:10

Radiochemistry, Radon


Radiochemistry, Radium 226/228

Radiochemistry, Gross Alpha Beta

10/23/2019 10:10

Analyze Uranium and Adjusted Alpha if G. Alpha is > 12

Containers Supplied:

	lame.	FCIP	TF		Project	ان. No.: ا	19687-1	012		
Vell No.	· m	257	-0-12		Date:	3,	15/19			
ocation	: F/	rence	SAL		Pipe Tai		mu!	57-0-K	unser/M.N	
otal De	pth:	1220			Geologi		5 Korne	1/h.M.	unser/M.N	i Ch
ype of	Connect	ions: 💋	Welded 🚨	T+C A Flush The	ead 🗆	Othe				
Pipe		Length	Length Σ	Pipe Type	Pipe		Length	Length Σ	Pipe Type	
	V	(ft)	(ft)			V	(ft)	(ft)	C'411 Co. 00 41	
	V .	•37	.37	SS ENDCAP	310	<u> </u>	20.01		SCH 80 BC	10
2	7 .	10.03	10.40	SCHSO PVC 10'	32	<u>√. •</u>	2002	550.82	0.02050	<u> 27</u>
3		10.03	20.43	0.020 SLOT	33c	<u>J, .</u>	20.22	570.84		
4	V	10.03	30.46		[34]	$\sqrt{}$.	20.02	590.86		
	7	10.03	40.49		35C	J.	20.01	610.87	_	
1/2	1	10.04	50.53		34	1	20.01	(,30.88		
		10.02	60.55	 	37c	7	20.02	650.90		
4	<u> </u>	10.03	70.58	 	38	1	1 72	651.67	155 to PK (W
8	1	20,01	90.59	SCH 80PVC 20'	39		20.00	671.67		
	Y	20.01		U.OZOSLOT	400	'	20.00	691.67	1	
10	'		110.60	0.0203101	41	- '/- '	20 00	711.67	 	
11	 \	20.61	130.61	 	71/42c	'// '	20.00		 	
17	 V ,	177	150.61	 		\\	20,00	731.67	+ +	
13	V , =	20.01	170.62	 	43	Y, -			 	
74	1		190 63	 	44c	1		771.67	 	
15	1	20.01	210.64	 	43	V , 4	20.0	791.69	+ + -	
16		190.00	230.64		460	V		811.69	<u> </u>	
17	17	120.0	250.65	<u> </u>	147	V. 1	20.00	100.00	 	
18	V	. 20.02	270.67	<u> </u>	486	1	, 20·w	851.69	 	
19	ŢĴ	,20.01			49	V	20.00	871.69		
25	1	120.01	310.69		150c	1.	20-00	891.69		
21]/ -	20.01			51	√.	120.00	91169		
22	17	20.0			52c	1	, 20.00	931 69		
23	 	20.0		1 -1 -	33	V	,2000	951.69	1	
24	 } . '	120 0	390.73	3 -	1		SUMI	MARY OF TAL		
给	 	77.7	3/10.74	1-1-	Total	ength ta		1201.69		
A /	++	180 V		 	1 (2)	Stick-L		w1'		
26	+	, <u>20.01</u>	17.00. / 0	+	_					
24	14-	<u> </u>	450.76	,	_		ing Cut-Off:	1200.69		
<u> </u>	11	120.0	1 470.77		┥	of Wei			0 (550.79-12	M
24	/	<u>. KO.D</u>	490.78			ed Inte		650.53	~(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<u> 30</u>		<u>, 120.0</u>	1510.79		Total S	creen i	n Hole:	030.33		

PIPE TALLY

Well No.: Location:	$\Delta \Delta$		TF P			Project	No.: /	1968.7	-012	<u> </u>
	_112	M5'+			_					
		wen	LL, AZ		_	Pipe Tal	lley for	Mu	157,-0.	· K
Total Dept		220	·		<u></u>	Geologi	st: {	5- Kar	<u>rev / K.,</u>	Munser
Type of Co	nnecti	ons: 🔼	Welded 🚨	T+C	Ø Flush	Thread 🗆	Othe	er	, ,	,
Pipe		Length	Length ∑	77(5)	Pipe Type	Pipe		Length	Length Σ	Pipe Type
	Y	(ft)	(ft)	Nather.			1	(ft)	(ft)	
540	/ ,	20.06	971.69	Sle	2120'	\bot				
55	<u>/ , </u>	20.UD	991.69		1					
50c .	✓ ,	20.00	1011.69							
54 .	<u>/ .</u>	20.00	1031.69			\perp				
58C		20.00	1051.69			T				
59	/ .	20.00	1071.69			1 1			Ī	
ToOr		20.00	1091.69							1
[0].		20.01	1111.70							
6lc	$\sqrt{}$	20.00	1131.70							
63		19.99	1151.69	П		 			-	
10-0	/ .	2000	1171.69		-			_	 	
(5)	/ 1	20.00	1191.69			+ +		<u>-</u> -	 	
lde 1		10.00	1201.69	51	1 10'	1-1			 	
	•	,,,,,,,	1201101	<i>.</i> 7 <u>~</u>	21. 1()	+ +			 	
	`					1			-	
		-				 			 	
						 				-
-				_	-	-			 	
						1			 	
						+ +		_		-
						1 1				-
			·			1 -				
						+-+			 	
					<u> </u>	╫		CLIRA	MARY OF TALL	
	\dashv		_	-		Total Ler				.Υ
						_	-		1201.69	
			_	_		Casing S			~1	
- -			•		350			g Cut-Off:		
	$\overline{}$,	Bottom o			1200.69	/mm - A
	 					Screene			220-1900	(550.79-1200.3
			_			Total Scr	reen in	Hole:	620.23	

ESTIMATED ANNULAR MATERIAL RECORD MW57-0-R Project Name: FCI PTF Project # .: 129687 -012 Well No .: MW 57-0- R Geologist: 5 Kaney / K. Munsa **ANNULAR VOLUME CALCULATIONS** ||Total Depth of Borehole [T]: [2]し feet Total Cased Depth: feet 1260 Borehole Diameter [D]: Rat Hole Volume [R=(D²) 0.005454*L_.]: inches (0.01 Ft³ Screen Length [L]: 250.90 feet Rat Hole Length [L] feet 10 Screen Diameter [d_]: Camera Tube Length [L] inches feet Casing Length [L] 201.69 feet Camera Tube Diameter [d_] inches Casing Diameter [d] inches Screen Annular Volume (A.): (D2-d.2) 0.005454 = Ft3/Lin. Ft 0.46 Casing Annular Volume (A): (D²-d ²) 0.005454 = 0.46 Ft3/Lin. Ft 533 Casing/Cam.Tube Annular Volume (A___): (D²-d_²-d_²) 0.005454 = Ft3/Lin. Ft choke/bentonite **EQUATIONS** 520 2,700 lbs. Silica Sand = 1 cubic yard = 27 cubic feet Bentonite Sack = 0.69 ft Volume of bag (Ft3) = bag weight/100 Silica Sand Super Sack = 3000 lbs. Calculated depth = Previous Calculated depth - (v/A) 8-12 Silica No. Weight Volume Total Vol. Calculated Comments Tagged sand of Bag of Bag (v) of Bags Depth² Depth (lbs.) (ft3) (ft³) (ft bis) (ft bls) 30 30 ९००० 1148 -3000 1083 1078 ,30 3000 90 1018 1005 1005 30 3000 120 453 939 5 CUUS 150 495 388 ma @ 873 . removed 3800 30 180 110 1210 3000 30 tremmie@774

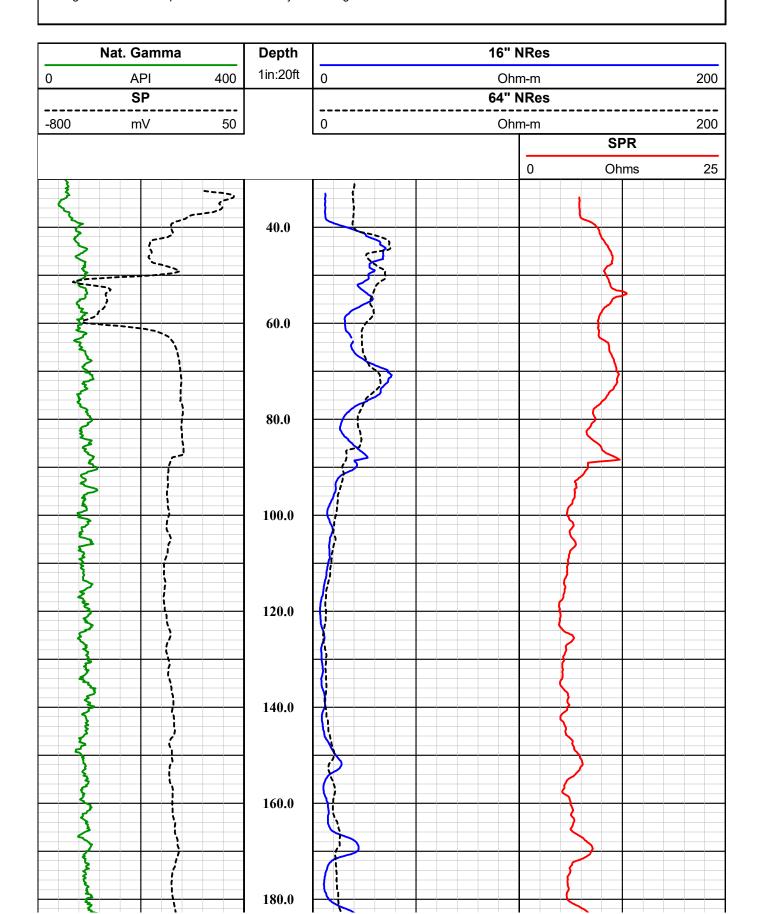
65.22 hoft per 5-gal broket

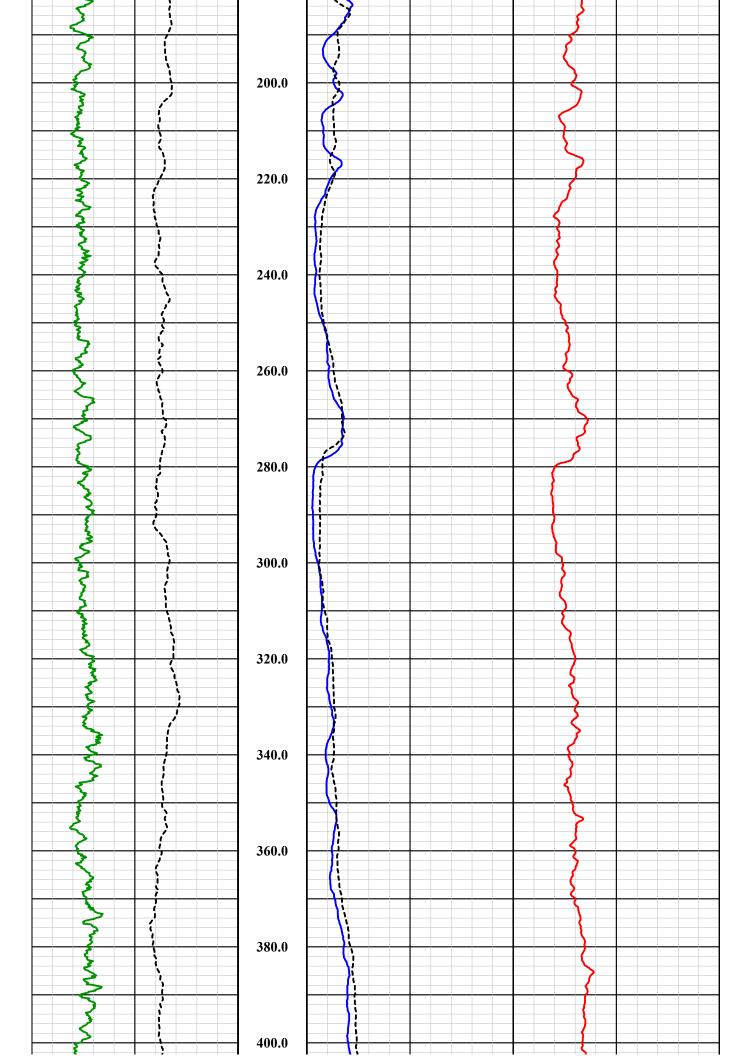
213

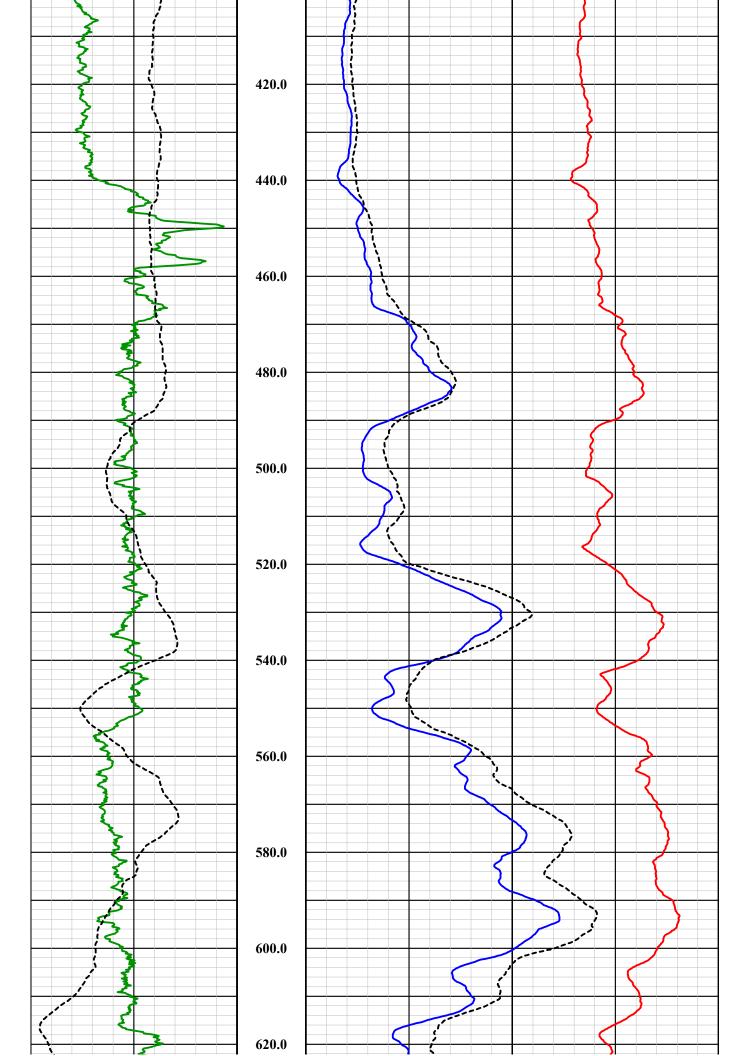
No.	1	Weight	Volume	Total Vol.	Calculated	Tagged	Comments /
		of Bag	of Bag (v)	of Bags	Depth ²	Depth	
1	188	(lbs.)	(ft³)	(ft³)	(ft bls)	(ft bls)	
	1	3000	30	240	709	760	2 - I remaile remared -> (a) (644)
	1	3000	30 30	270	640	624	
)	J,	3000		300	\$75	551	Tremme @ 578' Tremme @ 578'
	<u> </u>	5-gal	0.67 +2	3014	573	547	Tremmie @ \$33."
<u> </u>	<u> </u>	grigal	0.47	302.1	570	545	
	L,	i,		_	_ ;	575	Suab 1100-1200 >15mm
3	↓	5-gal	01×7مان	30828	560	560	
1	$ \bot $	5-Kal	0.67×8	314.2	548	551	
		9	_	-		546	Jun 01 - 1200 x 10 min
		- /		_	~	546	Swal 1100-1200 x 10m2
		-			_	550	Sunb 1000 -1100 x 15min
		-	_	-	-	550	Swab 1000-1100 x 10 A/A
		-	-	1	_	558	Swale 900 - 1000 x 15 min
		-	-	*	-	553	Swab 900-1000 x 10 Min
		1	-	į	-	553	Swab 900-1000 x 10 min
		1	-	1		<i>5</i> 93	5.00 - 900 x 15 m/s
		-	_	-	_	553	Sub 800-900 x 10 min
		1	-	1		556	Swab 700-800 x 15 min
		-				596	Swab 700-800 x10 min
		-	-		-	558	Swab (000-700) x 15 min
		-	_			559	S. Nab 600 - 700 x 10 min
		-	-			559	Swab 600 - 700 410 min

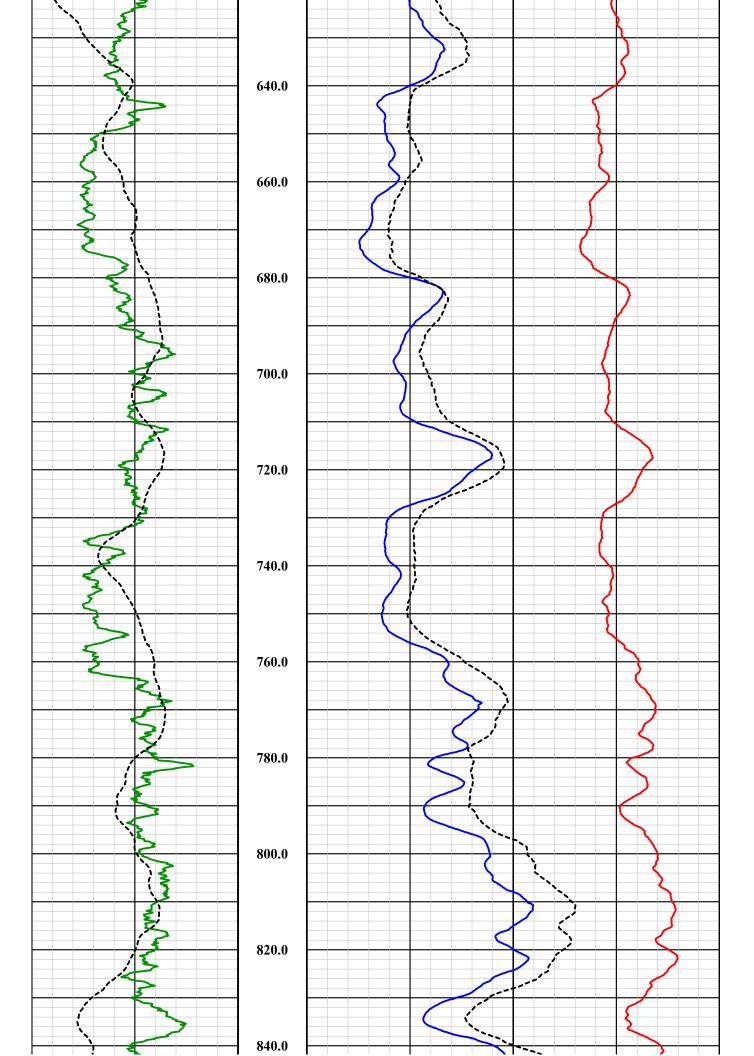
Ra

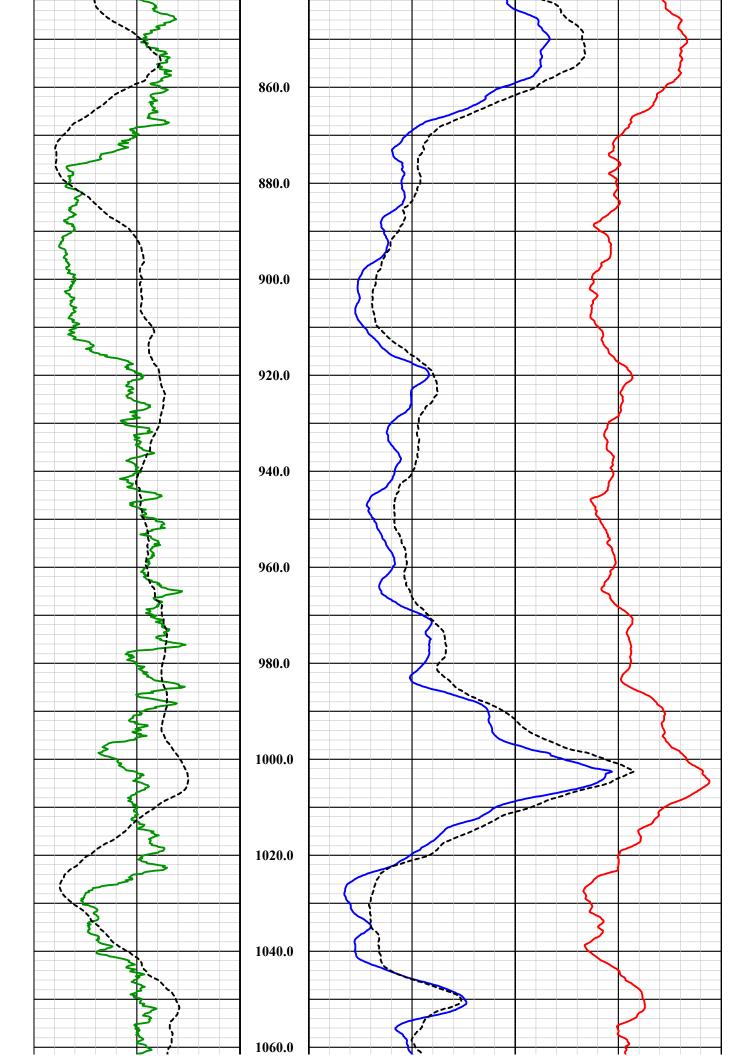
No.	1	Wr <u>5</u> 7 Weight	Volume	Date: 31-9	Calculated	Tagged	Comments
		of Bag	of Bag (v)	of Bags	Depth ²	Depth	
		(lbs.)	(ft³)	(ft³)	(ft bls)	(ft bls)	
5	1		0.6728	320.6	547	554	
ما	\vdash	9-gal	0.67x6	324.6	545	546	
<u></u>	- -	<u> </u>	- U.G./X.W	2011	7-19	548	Sural 600 - 556 x 19min 7,5 min
#2417		5-00l	0,67×2	325.9	545	545	2 H
78-7	Ť		-	-		545	Swab 600-550 x 7,5 m/s
		1	~		-	545	Sue w/s 600 - 550x 5 min
18	7	5-gal	0.67 ×4	328.6	539	541	1#60 sand Benton te lel Plug x 2
19	J.	5 gal	0.67 × X3		533	537	#100 Sand x 1 / Bentonite Pel Plug x x 1.5*
25	1	5-dal	067×2	332.4	530	583	#100 Sand x1/Bentrate Pel Plug x1
٦١	\	7	-			Surface	16 4d nest Type 11/4 comest
							J
	Ш						
	Ш						
	\vdash						
			<u></u>				
Notes:	<u>\$ 5€0</u>	field note	5 fr mail 1	nto on a	mounts c	hange.	

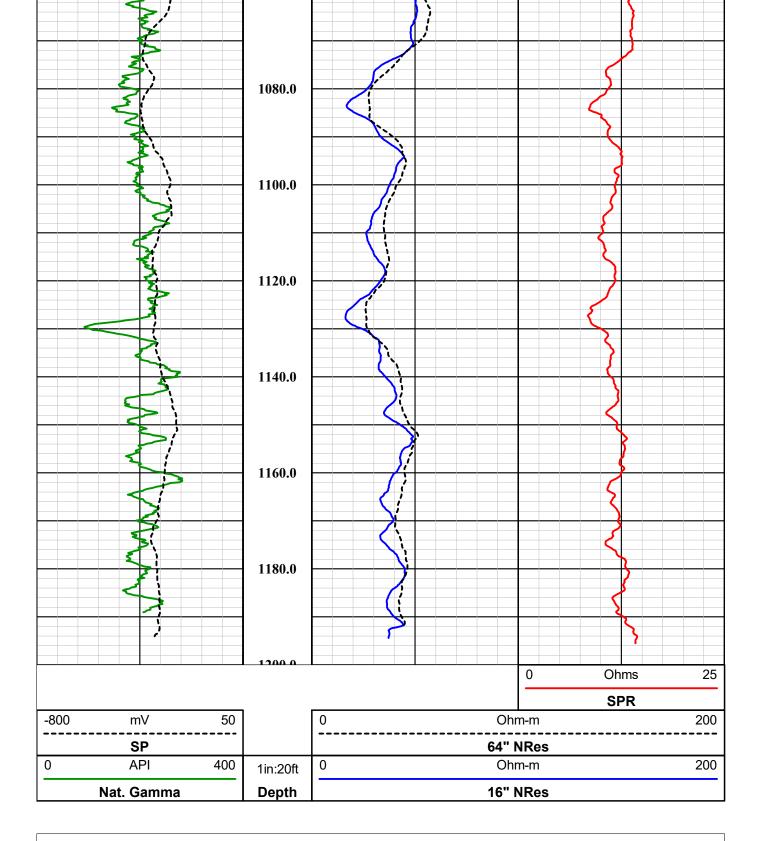

	Se	Southwest Exploration Services, LLC	St E	C	ation	. 176761
	borel	borehole geophysics & video services	ysics 8	ર્ષ video s	ervices	ĺ
	COMPANY	FLORENCE COPPER	OPPER			
	WELL ID	M57R-O				
	FIELD	FLORENCE COPPER	OPPER			
	COUNTY	PINAL		STATE	ARIZONA	
	TYPE OF	TYPE OF LOGS: E-LOG	Ğ		OTHER SERVICES	'ICES
	MORE:	NAT.	NAT. GAMMA		TEMPERATURE	RE
	LOCATION				SONIC DEVIATION	OUCTIVITY
	SEC	TWP	RGE			
PERMANENT DATUM			ELEVATION		K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	ЛМ	D.F.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE	L			G.L.	
DATE	3-4-19		TYPE FLUID IN HOLE	D IN HOLE	MUD	
RUN No	1 & 2		MUD WEIGHT	EIGHT	N/A	
TYPE LOG	E-LOG - N	E-LOG - NAT. GAMMA	VISCOSITY	ITY	N/A	
DEPTH-DRILLER	1200 FT		LEVEL		FULL	
DEPTH-LOGGER			MAX. REC. TEMP.	TEMP.	32.07 Deg C	
TOP LOGGED INTERVAL	SURFACE		SAMPLE INTERVAL	SAMPLE INTERVAL	0.2 FT	
DRILLER / RIG#	STEWART	STEWART BROTHERS	LOGGING TRUCK	TRUCK	TRUCK #900	
RECORDED BY / Logging Eng.	Eng. M. QUINONES	NES	TOOL STRING/SN	NG/SN	GEOVISTA E	GEOVISTA E-LOG SN 7055
WITNESSED BY	CHAD PRICE - H&A	CE - H&A	LOG TIME	LOG TIME:ON SITE/OFF SITE	TE 2:00 PM	
RUN BOREHOLE RECORD	CORD		CASING RECORD	CORD		
NO. BIT I	FROM	ТО	SIZE	WGT. FI	FROM	ТО
1 ? IN S	SURFACE	40 FT	14 IN	STEEL SU	SURFACE	40 FT
2 10 5/8 IN ²	40 FT	TOTAL DEPTH				
COMMENTS:						
•						


Tool Summary:					
Date	3-4-19	Date	3-4-19	Date	3-4-19
Run No.	1	Run No.	2	Run No.	3
Tool Model	QL COMBO TOOL	Tool Model	GEOVISTA E-LOG	Tool Model	MSI 60MM SONIC
Tool SN	6517	Tool SN	7055	Tool SN	5001
From	SURFACE	From	40 FT	From	40 FT
То	1196 FT	То	1196 FT	То	1196 FT
Recorded By	M. QUINONES	Recorded By	M. QUINONES	Recorded By	M. QUINONES
Truck No	900	Truck No	900	Truck No	900
Operation Check	3-4-19	Operation Check	3-4-19	Operation Check	3-4-19
Calibration Check	3-4-19	Calibration Check	3-4-19	Calibration Check	N/A
Time Logged	2:45 PM	Time Logged	3:45 PM	Time Logged	4:50 PM
Date	3-4-19	Date		Date	
Run No.	4	Run No.	5	Run No.	6
Tool Model	MSI DEVIATION	Tool Model		Tool Model	
Tool SN	3082	Tool SN		Tool SN	
From	40 FT	From		From	
То	1196 FT	То		То	
Recorded By	M. QUINONES	Recorded By		Recorded By	
Truck No	900	Truck No		Truck No	
Operation Check	3-4-19	Operation Check		Operation Check	
Calibration Check	N/A	Calibration Check		Calibration Check	
Time Logged	6:15 PM	Time Logged		Time Logged	
Additional Comr	nents:				
Caliper Arms Use	d :16"	Calibi	ration Points: 8"	& 16"	
l <u> </u>		<u> </u>			


E-Log Calibration Range:	10 & 1000 OHM-M	Calibration Points:	10 & 1000 OHM-M	


Disclaimer:


All interpretations of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretations or recommendations and shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our employees or agents. These interpretations are also subject to our general terms and conditions set out in our current Service Invoice.



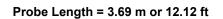
Probe Top = Depth Ref.

Tool SN: 4035, 4790 & 7055

Bridle connects to wireline cablehead: Wireline armor is the B Electrode.

Four Conductor Probe Top

Bridle Electrode (N Electrode)



QL40 Gamma-Caliper-Temperature-Fluid Conductivity

Probe Top = Depth Ref.

Four Conductor MSI Probe Top

Tool SN: 5613, 5979, 6161 & 6292

Probe Weight = 18.195 kg or 40.11 lbs Caliper arms can only collect data logging up hole Fluid Temperature/Conductivity and Natural Gamma can be collected logging up and down hole Temperature Rating: 80 Deg C (176 Deg F) Presure Rating: 200 bar (2900 psi) **Natural Gamma Ray = 1.07 m (42.12 in)** 3-Arm Caliper = 1.78 m (70.27 in) Available Arm Sizes: 3", 9", and 15" FTC (Fluid Temperature/Conductivity) = 0.78 m (30.71 in) 1.57" or 40.0 mm Diameter

Company

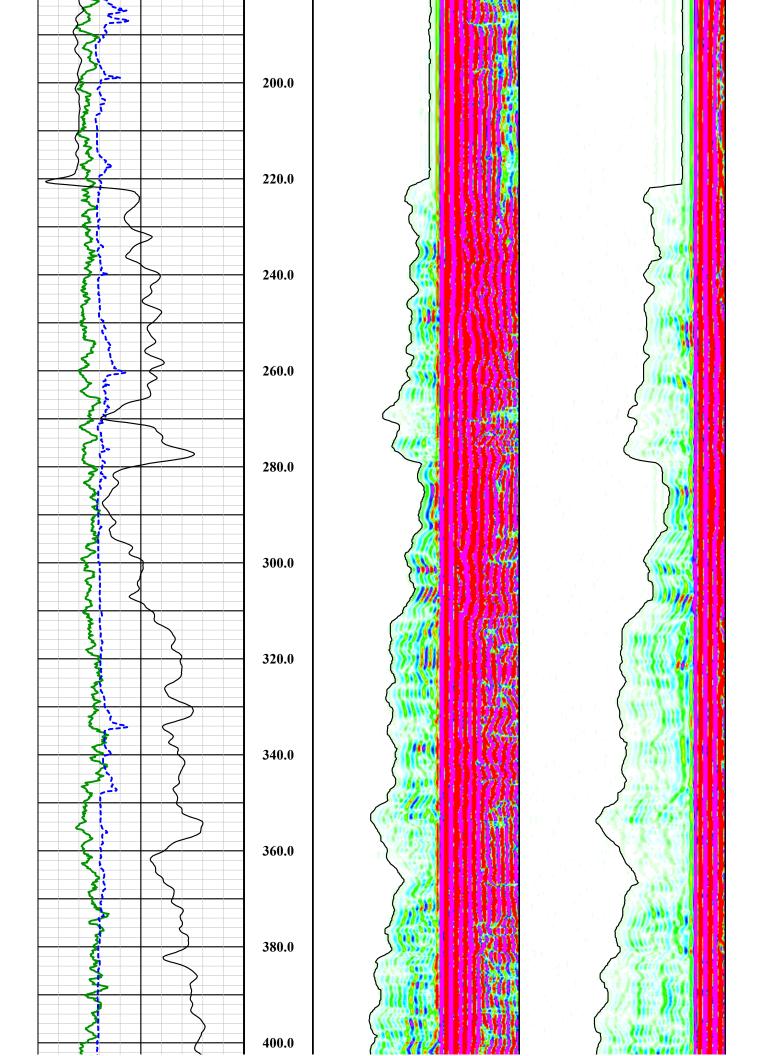
FLORENCE COPPER

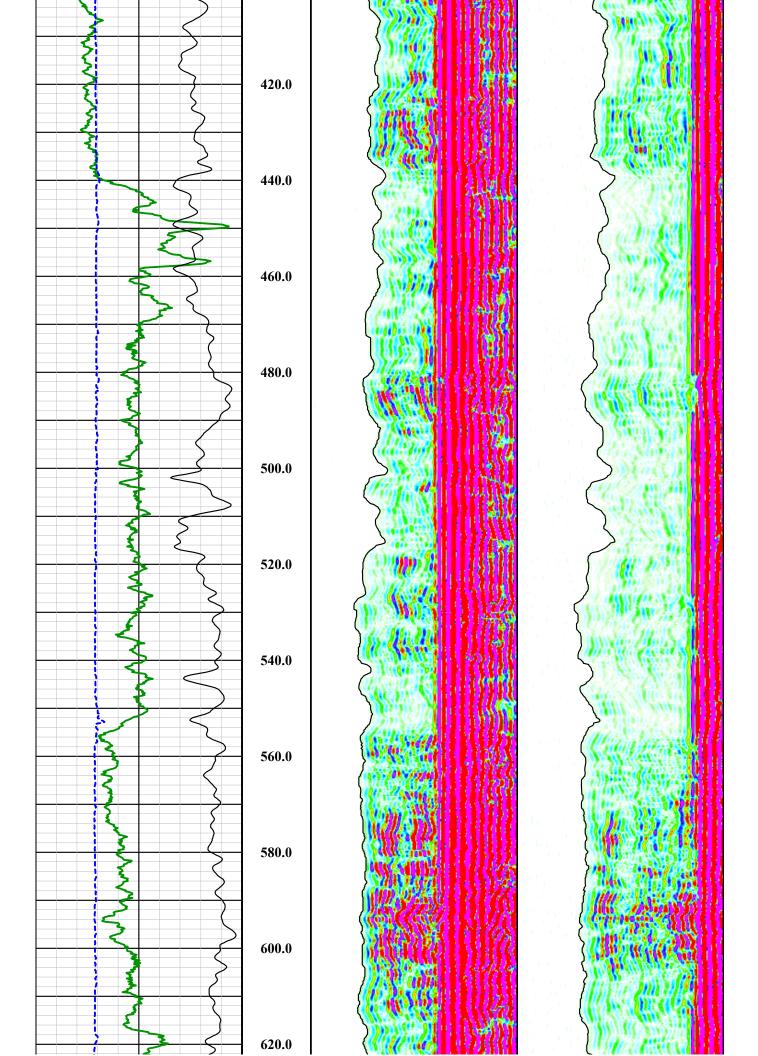
Well M57R-O

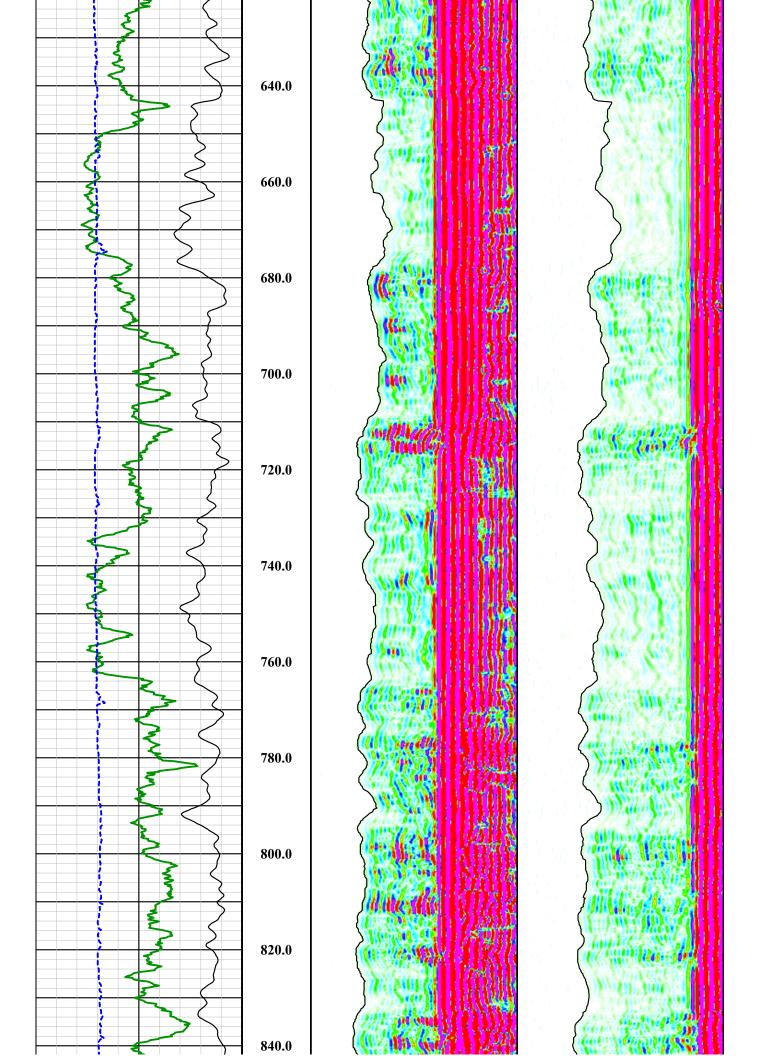
Field FLORENCE COPPER
County PINAL
State ARIZONA

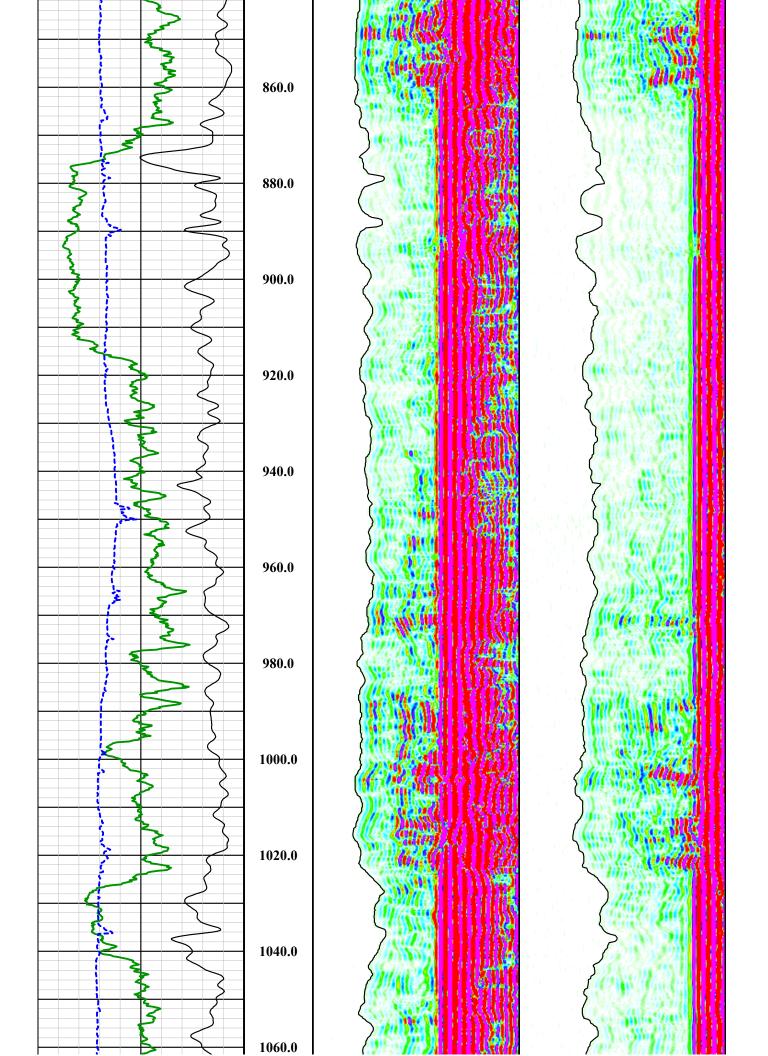
Final E-Log Summary

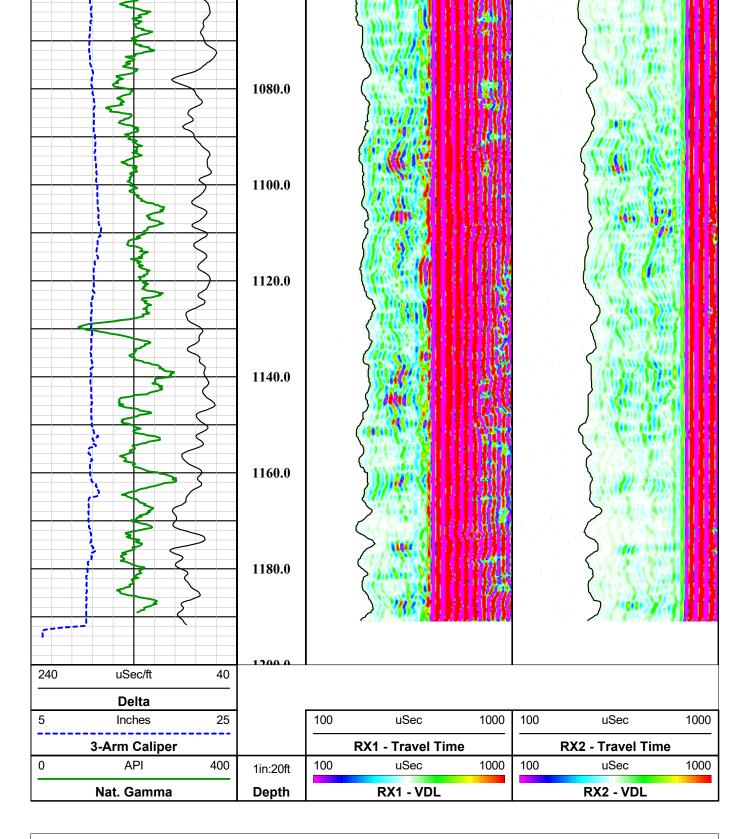
The Line	Sel Sel	Southwest Exploration Services, LLC borehole geophysics & video services	ysics &	C x video s	ation ervices	X 190 0 X1
	COMPANY WELL ID	FLORENCE COPPER M57R-O	OPPER			
I	FIELD	FLORENCE COPPER	OPPER			
	COUNTY	PINAL		STATE	ARIZONA	
	TYPE OF LOGS:		60MM SONIC		OTHER SERVICES	/ICES
	MORE:	GAMI	GAMMA - CALIPER	LIPER	FLUID CONDUCTIVITY	DUCTIVITY
1	LOCATION				DEVIATION	
S	SEC	TWP	RGE	3		
PERMANENT DATUM			ELEVATION		K.B.	
LOG MEAS. FROM G	GROUND LEVEL		ABOVE PERM. DATUM	JM	D.F.	
DRILLING MEAS. FROM GROUND LEVEL	ROUND LEVEI				G.L.	
DATE	3-4-19		TYPE FLUI	TYPE FLUID IN HOLE	MUD	
RUN No	1 & 4		MUD WEIGHT	EIGHT	N/A	
TYPE LOG	SONIC-GA	SONIC-GAMMA-CALIPER	VISCOSITY	SITY	N/A	
DEPTH-DRILLER	1200 FT		TEVEL TEMP	TEMP	FULL 32 07 Dec C	
BTM LOGGED INTERVAL	1196 FT		IMAGE OR	IMAGE ORIENTED TO:	N/A	
TOP LOGGED INTERVAL	SURFACE		SAMPLE INTERVAL	NTERVAL	0.25 FT	
DRILLER / RIG#	STEWART	STEWART BROTHERS	LOGGING TRUCK	TRUCK	TRUCK #900	
RECORDED BY / Logging Eng.	ig. M. QUINONES	NES	TOOL STRING/SN	ING/SN	MSI 60MM S	MSI 60MM SONIC SN 5001
WITNESSED BY	CHAD PRICE - H&A	CE - H&A	LOG TIME	LOG TIME:ON SITE/OFF SITE	TE 2:00 PM	
RUN BOREHOLE RECORD	ORD		CASING RECORD	ECORD		
NO. BIT FROM	MC	ТО	SIZE	WGT. FI	FROM	ТО
1 ? IN SUI	SURFACE	40 FT	14 IN	STEEL SI	SURFACE	40 FT
2 10 5/8 IN 40 FT	T	TOTAL DEPTH				
COMMENTS:						


Tool Summary:					
Date	3-4-19	Date	3-4-19	Date	3-4-19
Run No.	1	Run No.	2	Run No.	3
Tool Model	QL COMBO TOOL	Tool Model	GEOVISTA E-LOG	Tool Model	MSI 60MM SONIC
Tool SN	6517	Tool SN	7055	Tool SN	5001
From	SURFACE	From	40 FT	From	40 FT
То	1196 FT	То	1196 FT	То	1196 FT
Recorded By	M. QUINONES	Recorded By	M. QUINONES	Recorded By	M. QUINONES
Truck No	900	Truck No	900	Truck No	900
Operation Check	3-4-19	Operation Check	3-4-19	Operation Check	3-4-19
Calibration Check	3-4-19	Calibration Check	3-4-19	Calibration Check	N/A
Time Logged	2:45 PM	Time Logged	3:45 PM	Time Logged	4:50 PM
Date	3-4-19	Date		Date	
Run No.	4	Run No.	5	Run No.	6
Tool Model	MSI DEVIATION	Tool Model		Tool Model	
Tool SN	3082	Tool SN		Tool SN	
From	40 FT	From		From	
То	1196 FT	То		То	
Recorded By	M. QUINONES	Recorded By		Recorded By	
Truck No	900	Truck No		Truck No	
Operation Check	3-4-19	Operation Check		Operation Check	
Calibration Check	N/A	Calibration Check		Calibration Check	
Time Logged	6:15 PM	Time Logged		Time Logged	
Additional Comn	d: 16"		ration Points: 8"	& 16"	-


E-Log Calibration Range:	10 & 1000 OHM-M	Calibration Points:	10 & 1000 OHM-M	


Disclaimer:


All interpretations of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretations or recommendations and shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our employees or agents. These interpretations are also subject to our general terms and conditions set out in our current Service Invoice.


Nat. Gamma	Depth	RX1 - VDL			RX2 - VDL		
	1in:20ft	100	uSec	1000	100	uSec	1000
3-Arm Caliper		RX1 - Travel Time		ne	RX2 - Travel Time		
5 Inches	25	100	uSec	1000	100	uSec	1000
Delta	_						
240 uSec/ft	40	_					
3							
	40.0	1 1 9	7	neg de Mar denne	살다답	4	
	40.0			NESS.	Just 1 ju		
	.			4	Prince		
5-3					100		1
3	60.0		1	(3)	1,1		
\$ (` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	60.0			152111	I i		1
> 7			118				
3					Santa.		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00.0		{ }	(4)/m	l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	80.0		1	134113	Col		
\$ (2)) III				
			, I	V. Tr			
	1000			The state of the s			
	100.0		[1777			
3				SOF			
			الر				
			}	(/ ///// //////////////////////////////	,		5
3(120.0		3				
N. Carlotte				14417	: .		1
			}				
	140.0			mm	. '		
				WWW.	1		
					1		
					1		
	160.0				, ,		
2			}				
				10.00	1		
			Ŷ.	N WHI	$\frac{\Gamma^*}{\Gamma_0} = \Gamma^* \cdot \Gamma^*$		
75	180.0			NW J	- 1		

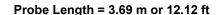
MSI 60 mm 2 RX Full Waveform Sonic Tool

Probe Top = Depth Ref. Tool SN: 5001, 5050 & 6003

Four Conductor MSI Probe Top

Probe Length = 2.8 m or 9.19 ft

Probe Weight = ~26.5 kg or 58.4 lbs


Sensors: Ceramic Piezoelectric Transmitter Frequency: 24 - 28 kHz resonant frequency Rx - Rx Spacing: 0.3 m (12.0 in) Typically centralized with external centralizers Can only be collected in fluid Temperature Rating: 80 Deg C (176 Deg F) Presure Rating: 200 bar (2900 psi) Rx-2 Tx - Rx2 Spacing = 1.22 m (48.0 in) Rx-1 Tx - Rx1 Spacing = .91 m (36.0 in)**Acoustic Isolater** - Tx = Acoustic Transmitter 0.660 m or 26.0 in. - End of tool to center of Tx 2.36 in or 60 mm Diameter

QL40 Gamma-Caliper-Temperature-Fluid Conductivity

Probe Top = Depth Ref.

Four Conductor MSI Probe Top

Tool SN: 5613, 5979, 6161 & 6292

Probe Weight = 18.195 kg or 40.11 lbs Caliper arms can only collect data logging up hole Fluid Temperature/Conductivity and Natural Gamma can be collected logging up and down hole Temperature Rating: 80 Deg C (176 Deg F) Presure Rating: 200 bar (2900 psi) **Natural Gamma Ray = 1.07 m (42.12 in)** 3-Arm Caliper = 1.78 m (70.27 in) Available Arm Sizes: 3", 9", and 15" FTC (Fluid Temperature/Conductivity) = 0.78 m (30.71 in) 1.57" or 40.0 mm Diameter

Company

FLORENCE COPPER

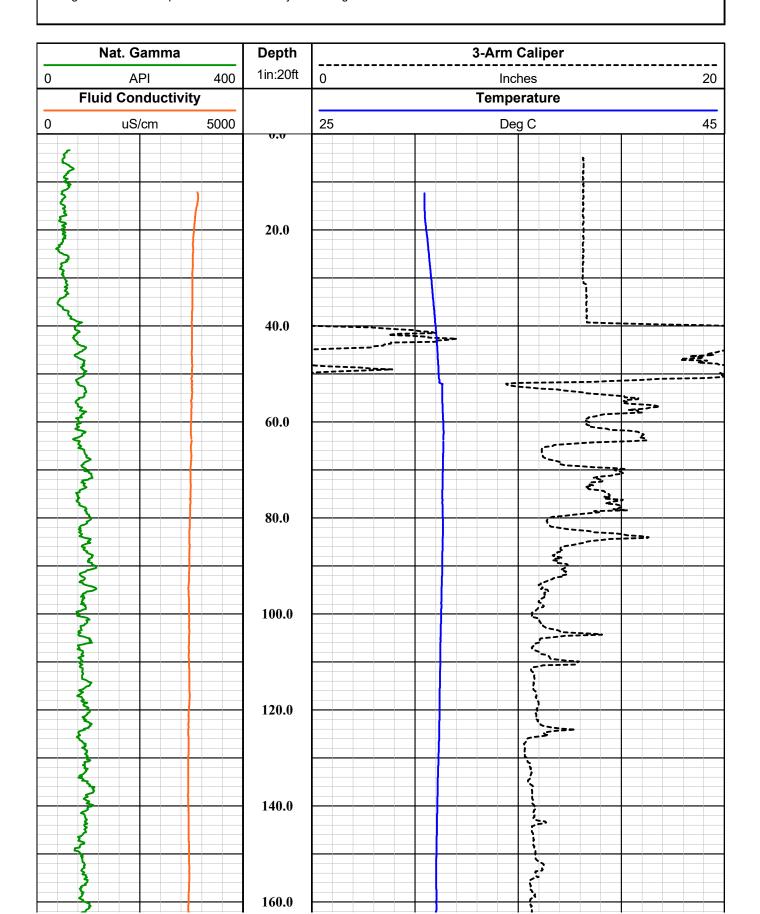
Well

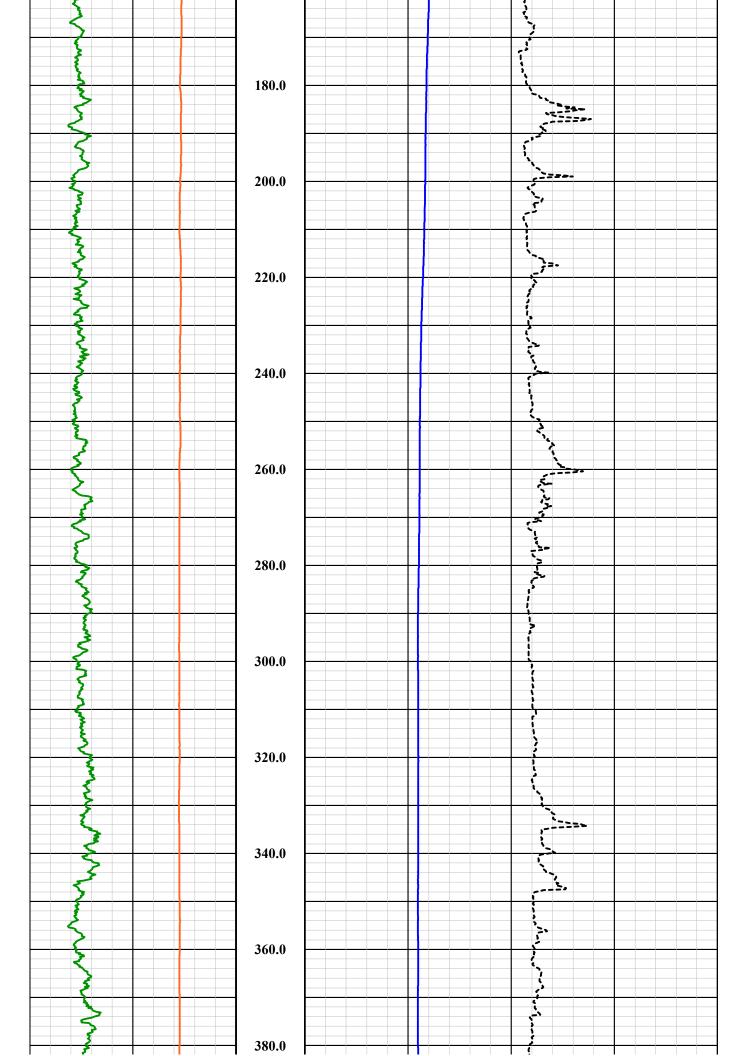
Field FLORENCE COPPER

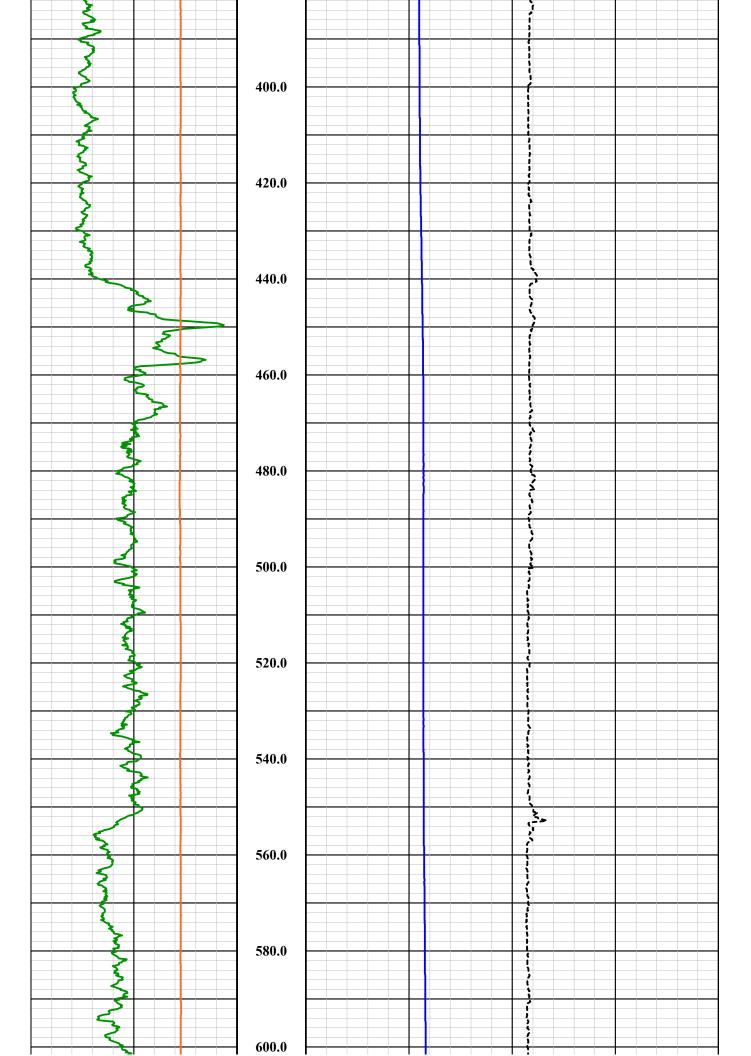
M57R-O

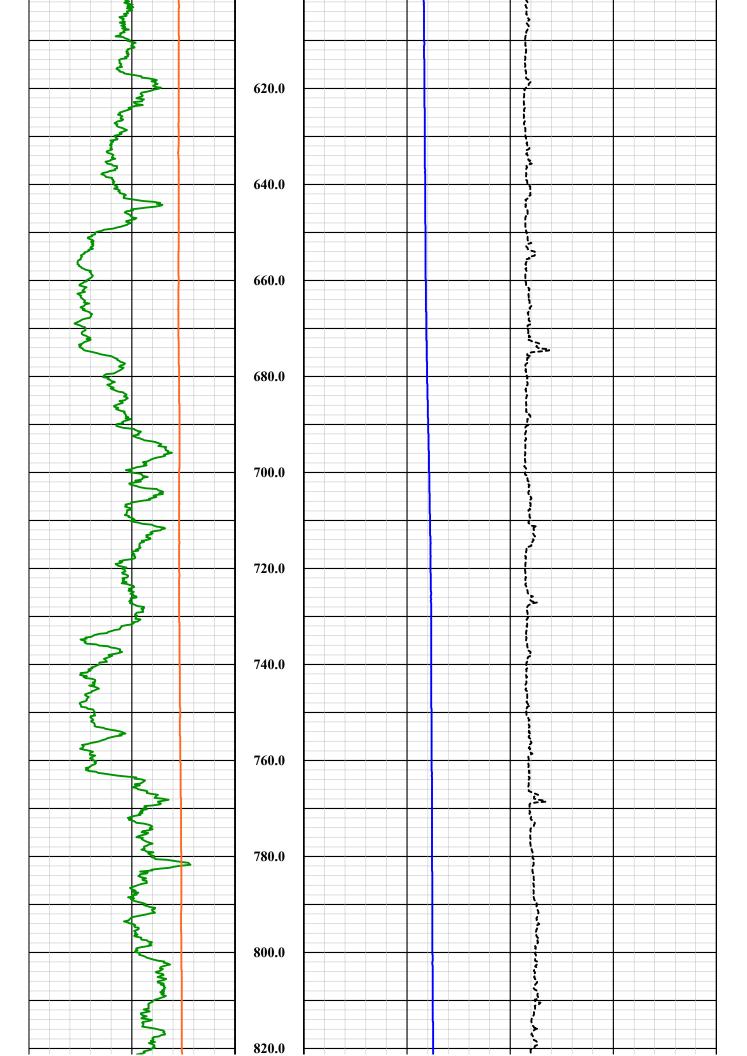
County PINAL State ARIZONA

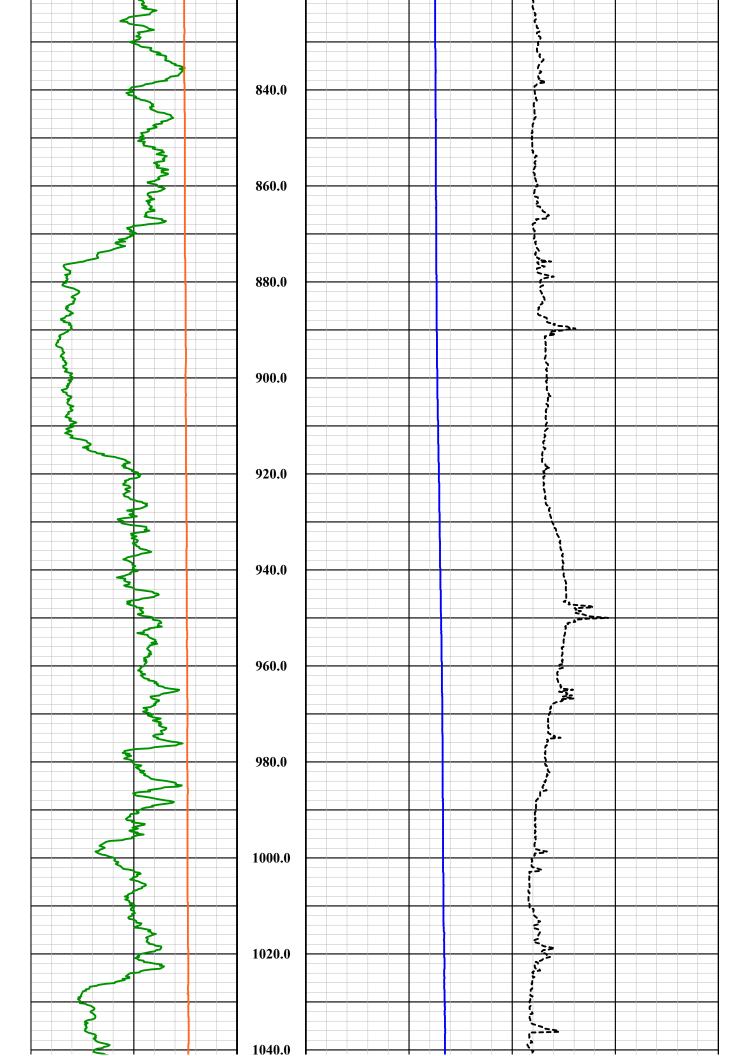
Final Sonic Summary

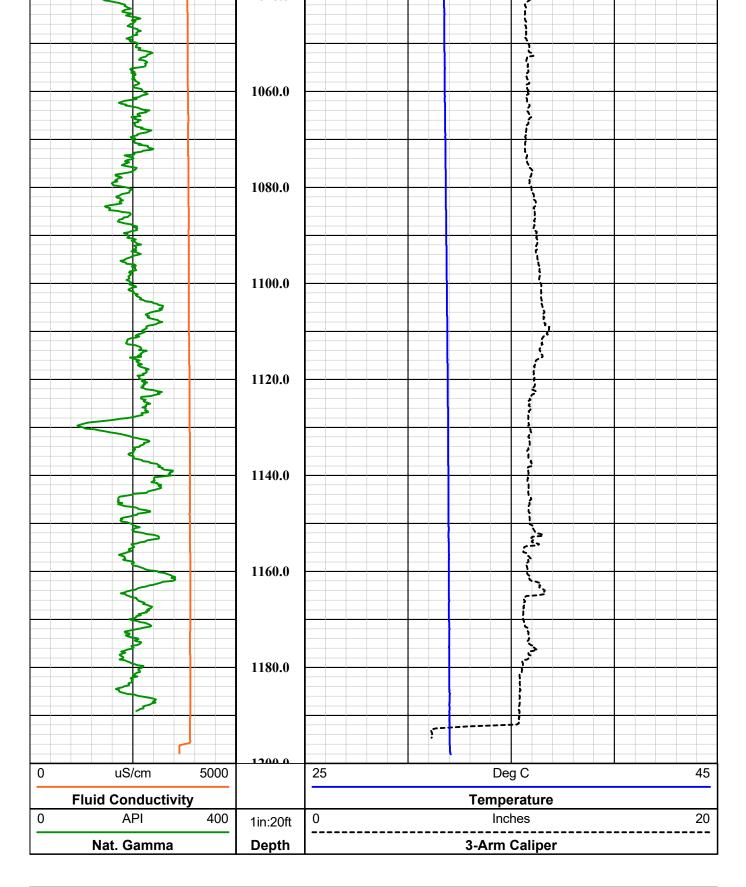

\ \		U			i	
	Se	Southwest Exploration Services, LLC	st E	C	ration	
	bore	borehole geophysics & video services	ysics 8	k video s	ervices	
	COMPANY	FLORENCE COPPER	OPPER			
	WELL ID	M57R-O				
	FIELD	FLORENCE COPPER	OPPER			
	COUNTY	PINAL		STATE	E ARIZONA	
	TYPE OF LOGS:		GAMMA - CALIPER	LIPER	OTHER SERVICES	/ICES
	MORE:	-	TEMP / FLUID COND.	COND.	SONIC	
	LOCATION				DEVIATION	
	SEC	TWP	RGE			
PERMANENT DATUM			ELEVATION		K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	JM	D.F.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE	L			G.L.	
DATE	3-4-19		TYPE FLUID IN HOLE	D IN HOLE	MUD	
RUN No	1		MUD WEIGHT	EIGHT	N/A	
TYPE LOG	GAMMA-0	GAMMA-CALIPER-FTC	VISCOSITY	ITY	N/A	
DEPTH-DRILLER	1200 FT		LEVEL		FULL	
DEPTH-LOGGER			MAX. REC. TEMP.	TEMP.	32.07 Deg C	
TOP LOGGED INTERVAL	L SURFACE		SAMPLE INTERVAL	SAMPLE INTERVAL	0.2 FT	
DRILLER / RIG#	STEWART	STEWART BROTHERS	LOGGING TRUCK	RUCK	TRUCK #900	
RECORDED BY / Logging Eng.	Eng. M. QUINONES	NES	TOOL STRING/SN	NG/SN	QL COMBO	QL COMBO TOOL SN 6517
WITNESSED BY	CHAD PRICE - H&A	CE - H&A	LOG TIME	LOG TIME:ON SITE/OFF SITE	TE 2:00 PM	
RUN BOREHOLE RECORD	ECORD		CASING RECORD	CORD		
NO. BIT	FROM	ТО	SIZE	WGT. F.	FROM	ТО
1 ? IN	SURFACE	40 FT	14 IN	STEEL S	SURFACE	40 FT
2 10 5/8 IN 3	40 FT	TOTAL DEPTH				
COMMENTS:						

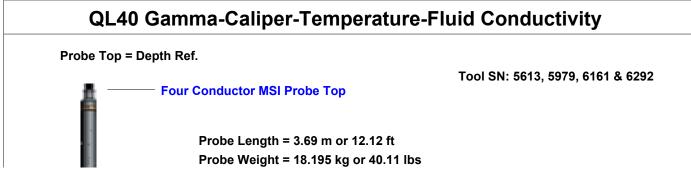

Tool Summary:					
Date	3-4-19	Date	3-4-19	Date	3-4-19
Run No.	1	Run No.	2	Run No.	3
Tool Model	QL COMBO TOOL	Tool Model	GEOVISTA E-LOG	Tool Model	MSI 60MM SONIC
Tool SN	6517	Tool SN	7055	Tool SN	5001
From	SURFACE	From	40 FT	From	40 FT
То	1196 FT	То	1196 FT	То	1196 FT
Recorded By	M. QUINONES	Recorded By	M. QUINONES	Recorded By	M. QUINONES
Truck No	900	Truck No	900	Truck No	900
Operation Check	3-4-19	Operation Check	3-4-19	Operation Check	3-4-19
Calibration Check	3-4-19	Calibration Check	3-4-19	Calibration Check	N/A
Time Logged	2:45 PM	Time Logged	3:45 PM	Time Logged	4:50 PM
Date	3-4-19	Date		Date	
Run No.	4	Run No.	5	Run No.	6
Tool Model	MSI DEVIATION	Tool Model		Tool Model	
Tool SN	3082	Tool SN		Tool SN	
From	40 FT	From		From	
То	1196 FT	То		То	
Recorded By	M. QUINONES	Recorded By		Recorded By	
Truck No	900	Truck No		Truck No	
Operation Check	3-4-19	Operation Check		Operation Check	
Calibration Check	N/A	Calibration Check		Calibration Check	
Time Logged	6:15 PM	Time Logged		Time Logged	
Additional Comm	nents: d:16"		ration Points: 8"	& 16"	-


E-Log Calibration Range: 10 & 1000 OHM-M Calibration Points: 10 & 1000 OHM	<u>1-M</u>
--	------------


Disclaimer:


All interpretations of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretations or recommendations and shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our employees or agents. These interpretations are also subject to our general terms and conditions set out in our current Service Invoice.





Caliper arms can only collect data logging up hole

Fluid Temperature/Conductivity and Natural Gamma can be collected logging up and down hole

Temperature Rating: 80 Deg C (176 Deg F)

Presure Rating: 200 bar (2900 psi)

Natural Gamma Ray = 1.07 m (42.12 in)

- 3-Arm Caliper = 1.78 m (70.27 in)

Available Arm Sizes: 3", 9", and 15"

FTC (Fluid Temperature/Conductivity) = 0.78 m (30.71 in)

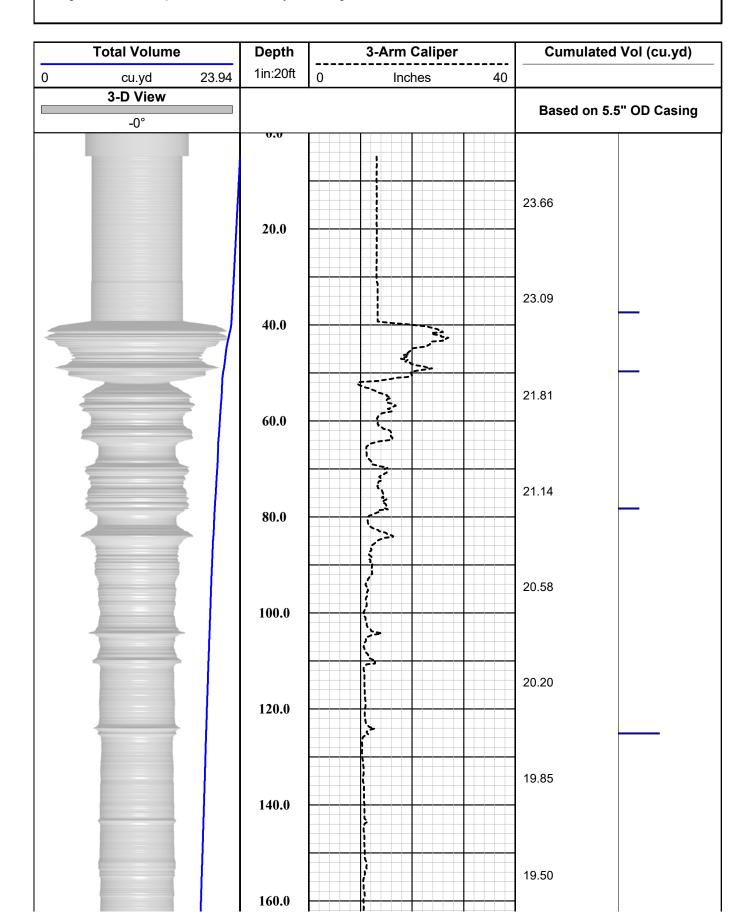
1.57" or 40.0 mm Diameter

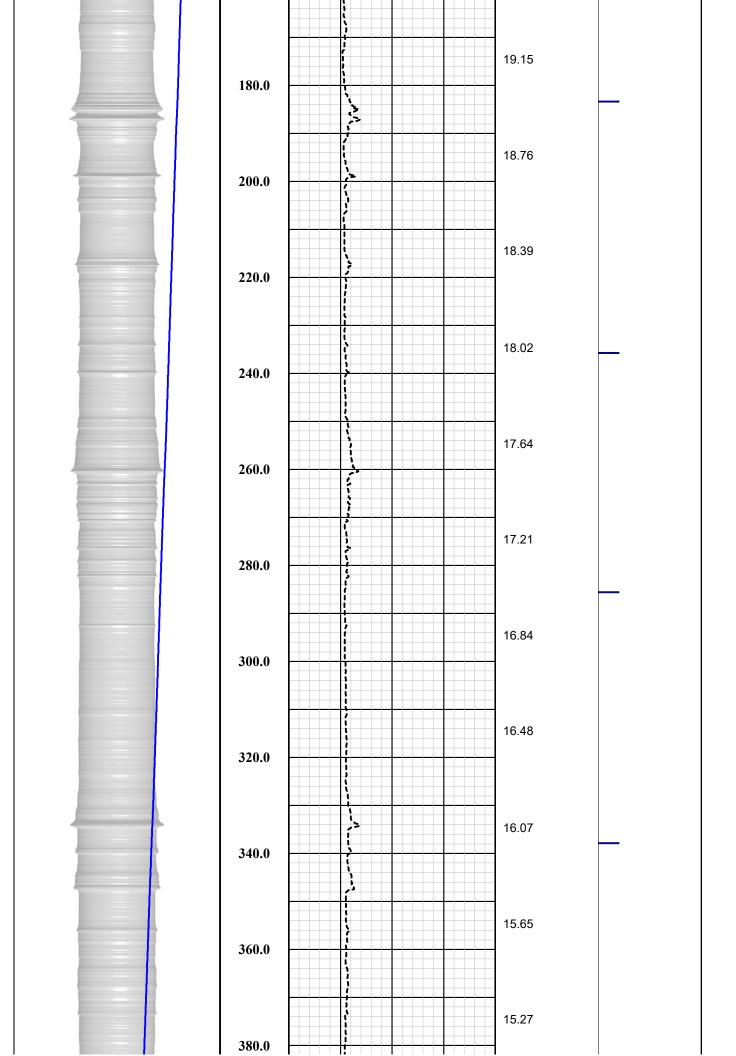
Company FLORENCE COPPER

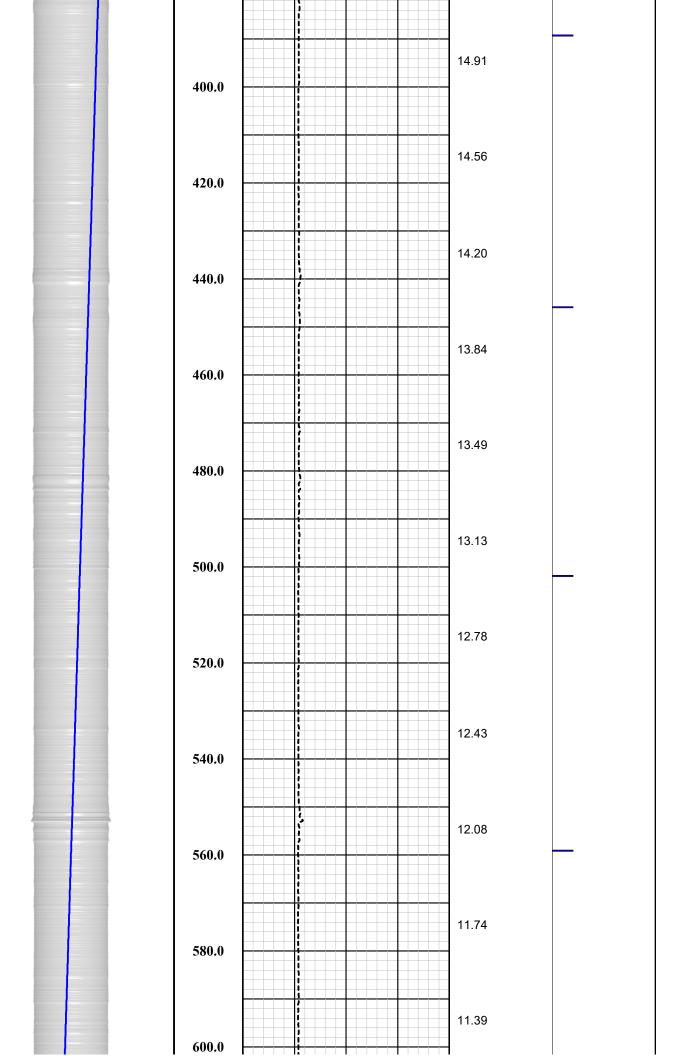
Well M57R-O

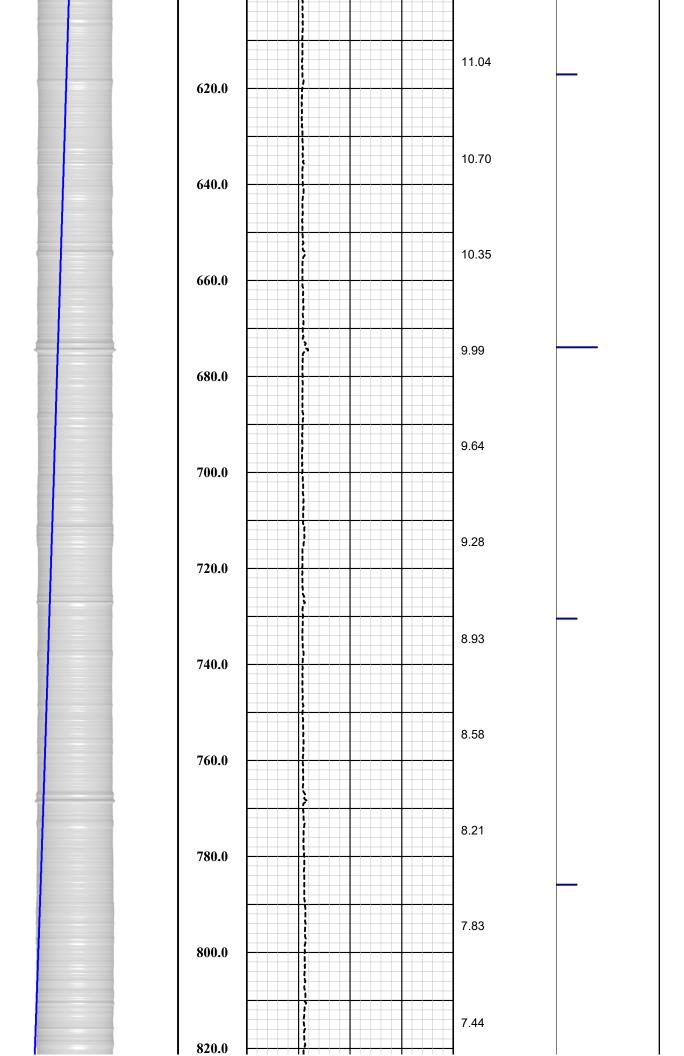
Field FLORENCE COPPER

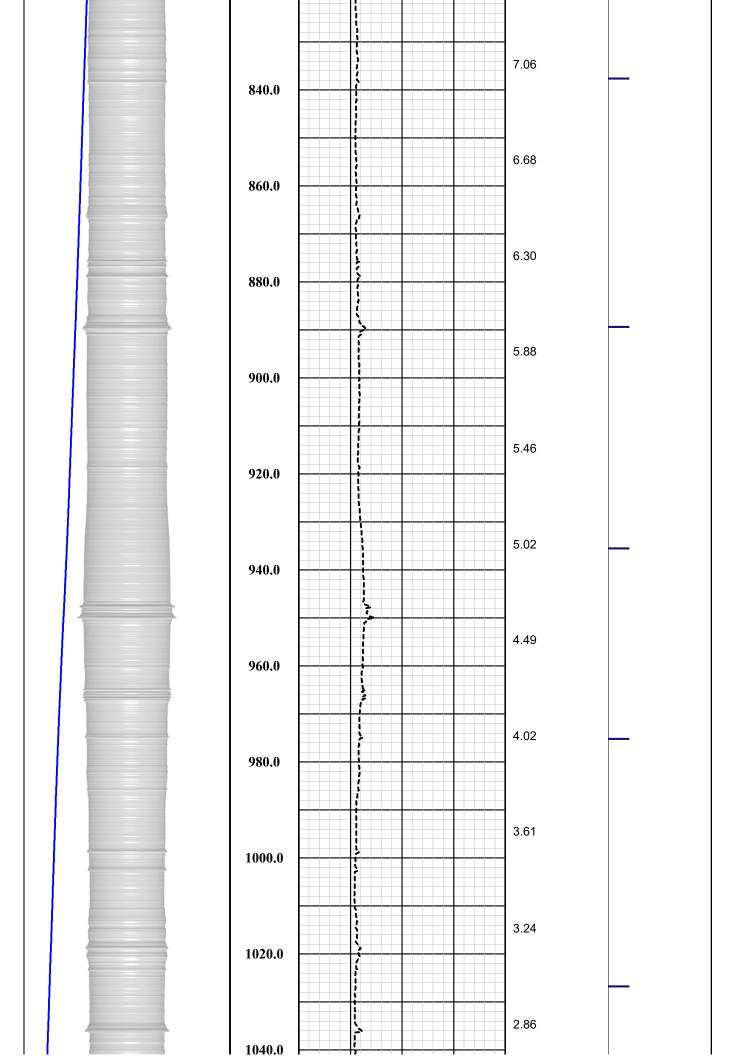
County PINAL State ARIZONA

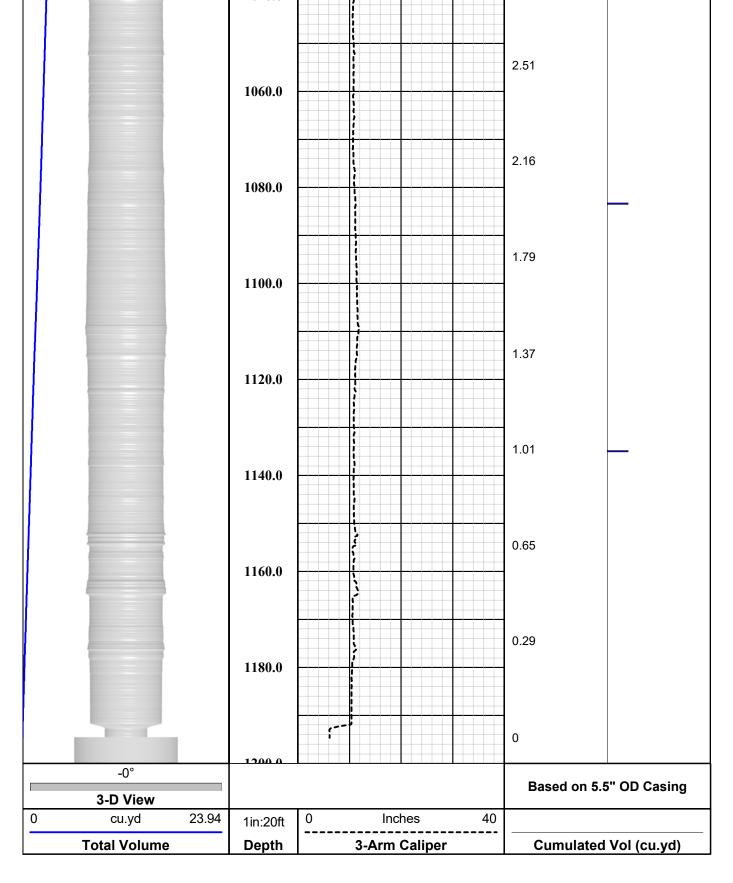

l h	Y	5				
Kint	Se	Southwest Exploration Services, LLC	StE	Cxploi	ration	
A	bore	borehole geophysics & video services	ysics 8	k video s	ervices	Î
	COMPANY	FLORENCE COPPER	OPPER			
	WELL ID	M57R-0				
	FIELD	FLORENCE COPPER	OPPER			
	COUNTY	PINAL		STATE	ARIZONA	
	TYPE OF	TYPE OF LOGS: 3-ARM CALIPER	M CALI	PER	OTHER SERVICES	/ICES
	MORE:	W / V	W / VOLUME CALC.	CALC.	SONIC	
	LOCATION				DEVIATION	
	SEC	TWP	RGE			
PERMANENT DATUM			ELEVATION		K.B.	
LOG MEAS. FROM	GROUND LEVEL		ABOVE PERM. DATUM	JM	D.F.	
DRILLING MEAS. FROM GROUND LEVEL	GROUND LEVE				G.L.	
DATE	3-4-19		TYPE FLUID IN HOLE	D IN HOLE	MUD	
RUN No	1		MUD WEIGHT	EIGHT	N/A	
TYPE LOG	VOLUME	VOLUME CALCULATION	VISCOSITY	ПҮ	N/A	
DEPTH-DRILLER	1200 FT		LEVEL		FULL	
DEPTH-LOGGER			MAX. REC. TEMP.	TEMP.	32.07 Deg C	
TOP LOGGED INTERVAL	SURFACE		SAMPLE INTERVAL	SAMPLE INTERVAL	0.2 FT	
DRILLER / RIG#	STEWART	STEWART BROTHERS	LOGGING TRUCK	TRUCK	TRUCK #900	
RECORDED BY / Logging Eng.	Eng. M. QUINONES	NES	TOOL STRING/SN	NG/SN	QL COMBO	QL COMBO TOOL SN 6517
WITNESSED BY	CHAD PRICE - H&A	CE - H&A	LOG TIME	LOG TIME:ON SITE/OFF SITE	TE 2:00 PM	
RUN BOREHOLE RECORD	CORD		CASING RECORD	CORD		
NO. BIT FI	FROM	TO	SIZE	WGT. FI	FROM	ТО
1 ? IN SI	SURFACE	40 FT	14 IN	STEEL SI	SURFACE	40 FT
2 10 5/8 IN 40 3	40 FT	TOTAL DEPTH				
COMMENTS:						

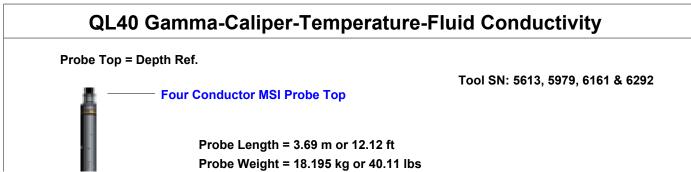

Tool Summary:					
Date	3-4-19	Date	3-4-19	Date	3-4-19
Run No.	1	Run No.	2	Run No.	3
Tool Model	QL COMBO TOOL	Tool Model	GEOVISTA E-LOG	Tool Model	MSI 60MM SONIC
Tool SN	6517	Tool SN	7055	Tool SN	5001
From	SURFACE	From	40 FT	From	40 FT
То	1196 FT	То	1196 FT	То	1196 FT
Recorded By	M. QUINONES	Recorded By	M. QUINONES	Recorded By	M. QUINONES
Truck No	900	Truck No	900	Truck No	900
Operation Check	3-4-19	Operation Check	3-4-19	Operation Check	3-4-19
Calibration Check	3-4-19	Calibration Check		Calibration Check	
Time Logged	2:45 PM	Time Logged	3:45 PM	Time Logged	4:50 PM
Date	3-4-19	Date		Date	
Run No.	4	Run No.	5	Run No.	6
Tool Model	MSI DEVIATION	Tool Model		Tool Model	
Tool SN	3082	Tool SN		Tool SN	
From	40 FT	From		From	
	1196 FT	То		То	
Recorded By	M. QUINONES	Recorded By		Recorded By	
Truck No	900	Truck No		Truck No	
Operation Check		Operation Check		Operation Check	
Calibration Check		Calibration Check		Calibration Check	
Time Logged		Time Logged		Time Logged	
Additional Comm	nents:				
Caliper Arms Use	d: 16"	Calibr	ration Points: 8"	& 16"	_
					-


E-Log Calibration Range:	10 & 1000 OHM-M	Calibration Points:	10 & 1000 OHM-M
		_	


Disclaimer:


All interpretations of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretations or recommendations and shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our employees or agents. These interpretations are also subject to our general terms and conditions set out in our current Service Invoice.





Caliper arms can only collect data logging up hole

Fluid Temperature/Conductivity and Natural Gamma can be collected logging up and down hole

Temperature Rating: 80 Deg C (176 Deg F)

Presure Rating: 200 bar (2900 psi)

Natural Gamma Ray = 1.07 m (42.12 in)

3-Arm Caliper = 1.78 m (70.27 in)

Available Arm Sizes: 3", 9", and 15"

FTC (Fluid Temperature/Conductivity) = 0.78 m (30.71 in)

1.57" or 40.0 mm Diameter

Company FLORENCE COPPER

Well M57

Field FLORENCE COPPER

County PINAL State ARIZONA

Final 3-Arm Caliper w/ Volume Calc Summary

Wellbore DRIFT Interpretation

PREPARED ESPECIALLY FOR FLORENCE COPPER M57R-O

Monday - March 4, 2019

This Wellbore Interpretation Package represents our best efforts to provide a correct interpretation. Nevertheless, since all interpretations are opinions based on inferences from electrical or other types of measurements, we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by Customer resulting from any interpretation made by this document. We do not warrant or guarantee the accuracy of the data, specifically including (but without limitations) the accuracy of data transmitted by electronic process, and we will not be responsible for accidental or intentional interception of such data by third parties. Our employees are not empowered to change or otherwise modify the attached interpretation. Furthermore, along with Eagle Pro Software we do not warrant or quarantee the accuracy of the programming techniques employed to produce this document. By accepting this Interpretation Package, the Customer agrees to the foregoing, and to our General Terms and Conditions.

WELLBORE DRIFT INTERPRETATION

Southwest Exploration Services, LLC (480) 926-4558

Company:					Well Owner:		FLO	DRENCE COP	PER	
County:		MARICOPA		State:	Arizona		Country:		United States	
Well Numb	oer:	M57R-O		Survey Date:	Monday - March 4, 20	19 N	Magnetic Declination	: Dec	clination Correction	n Not Used
Field:		FLORENCE	COPPER		Drift Calculation Method	ology:	Bala	nced Tangent	tial Method	
_ocation:										
Remarks:										
Witness:	STEWART BROS.	Vehicle No.:	900	Invoice No.:	Operator:	M. QUINONES	Well Depth:	1196 Feet	Casing size:	14 Inches

Long.:

Sec.:

Twp.:

Rge.:

M	EASURED DA	TA			DA	TA COMPUTA	TIONS		
DEPTHS, feet	INCLINATIONS, degrees	AZIMUTHS, degrees	TVD, feet	T. LATITUDE, feet	T. LONGITUDE, feet	DOGLEG SEV., degrees per 20 Feet	DOGLEG SEV., degrees per 100 feet	DRIFT DIST., feet	DRIFT BGR. degrees
40	0.30	340.01	40.00						
60	0.24	312.26	59.99	0.077	-0.049	0.96	1.96	0.09' (1.08")	327.70
80	0.40	300.93	79.98	0.141	-0.140	0.84	0.81	0.20' (2.40")	315.20
100	1.04	300.76	99.98	0.270	-0.356	0.42	0.05	0.45' (5.40'')	307.20
120	0.46	300.68	119.97	0.404	-0.581	0.14	0.04	0.71' (8.52'')	304.80
140	0.36	295.12	139.96	0.472	-0.707	0.42	0.40	0.85' (10.20")	303.70
160	0.75	312.42	159.95	0.587	-0.861	0.84	1.23	1.04' (12.48'')	304.30
180	0.88	280.71	179.94	0.704	-1.109	0.95	2.23	1.31' (15.72")	302.40
200	0.66	298.17	199.93	0.787	-1.361	0.39	1.24	1.57' (18.84")	300.00
220	0.46	300.11	219.92	0.882	-1.532	1.00	0.14	1.77' (21.24")	299.90
240	0.56	263.64	239.91	0.911	-1.699	1.00	2.56	1.93' (23.16")	298.20
260	0.50	293.18	259.90	0.935	-1.876	0.36	2.08	2.10' (25.20'')	296.50
280	1.28	321.95	279.89	1.145	-2.094	0.94	2.03	2.39' (28.68'')	298.70
300	0.67	290.37	299.88	1.362	-2.341	0.79	2.22	2.71' (32.52'')	300.20
320	0.78	294.39	319.87	1.459	-2.575	0.50	0.29	2.96' (35.52'')	299.50
340	0.42	324.79	339.86	1.575	-2.741	0.03	2.14	3.16' (37.92'')	299.90
360	0.46	321.95	359.85	1.698	-2.833	0.53	0.20	3.30' (39.60'')	300.90
380	0.78	297.41	379.84	1.824	-3.003	0.75	1.74	3.51' (42.12")	301.30

Page No. 1 True Vertical Depth: 1193.44' Final Drift Distance: 8.47' (101.64") Final Drift Bearing: 260.70°

Lat.:

Compass - 3082

Tool:

Note: Magnetic Declination is not used because it is not a factor in the calculation of well drift or alignment. Magnetic Declination is only important if attempting to hit a target or miss another well and then it is included in the calculations.

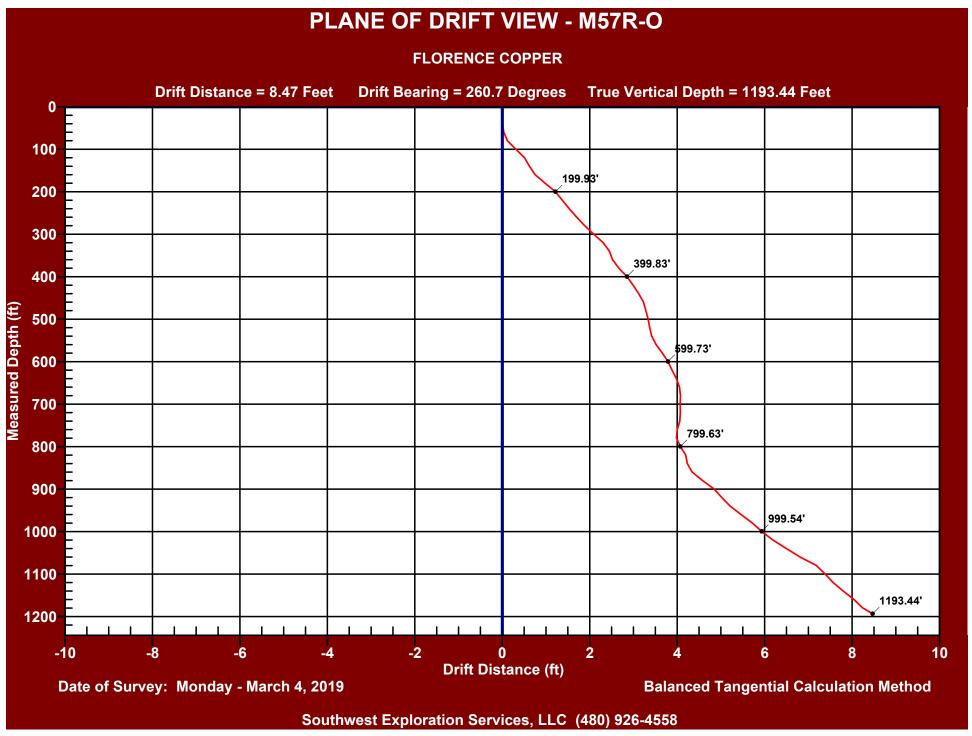
WELLBORE DRIFT INTERPRETATION

Southwest Exploration Services, LLC (480) 926-4558

M57R-O

M	EASURED DA	TA			DA	TA COMPUTA	TIONS		
DEPTHS, feet	INCLINATIONS, degrees	AZIMUTHS, degrees	TVD, feet	T. LATITUDE, feet	T. LONGITUDE, feet	DOGLEG SEV., degrees per 20 Feet	DOGLEG SEV., degrees per 100 feet	DRIFT DIST., feet	DRIFT BRG. degrees
400	0.57°	301.96°	399.83	1.939	-3.208	0.90	0.32	3.75' (45.00'')	301.20
420	0.39°	291.73°	419.82	2.017	-3.356	0.24	0.73	3.92' (47.04'')	301.00
440	0.50°	291.85°	439.81	2.075	-3.500	0.98	0.01	4.07' (48.84")	300.70
460	0.41°	317.06°	459.80	2.160	-3.630	0.97	1.78	4.22' (50.64")	300.80
480	0.13°	320.99°	479.79	2.230	-3.693	0.17	0.28	4.31' (51.72'')	301.10
500	0.23°	252.53°	499.78	2.236	-3.746	0.84	4.60	4.36' (52.32'')	300.80
520	0.13°	009.65°	519.77	2.246	-3.780	0.63	6.97	4.40' (52.80'')	300.70
540	0.33°	250.09°	539.76	2.249	-3.830	0.69	7.06	4.44' (53.28'')	300.40
560	0.25°	274.87°	559.75	2.233	-3.928	0.22	1.75	4.52' (54.24'')	299.60
580	0.60°	253.71°	579.74	2.207	-4.072	0.74	1.50	4.63' (55.56")	298.50
600	0.17°	299.06°	599.73	2.192	-4.198	0.54	3.15	4.74' (56.88")	297.60
620	0.45°	285.73°	619.72	2.228	-4.300	0.73	0.95	4.84' (58.08")	297.40
640	0.17°	251.15°	639.71	2.240	-4.404	0.07	2.43	4.94' (59.28")	297.00
660	0.22°	255.08°	659.70	2.221	-4.469	0.86	0.28	4.99' (59.88")	296.40
680	0.25°	005.52°	679.69	2.255	-4.502	0.84	6.71	5.03' (60.36")	296.60
700	0.11°	169.90°	699.68	2.280	-4.494	0.18	8.10	5.04' (60.48")	296.90
720	0.11°	198.20°	719.67	2.243	-4.497	0.60	2.00	5.02' (60.24")	296.50
740	0.55°	153.29°	739.66	2.139	-4.460	0.31	3.12	4.95' (59.40'')	295.60
760	0.41°	150.77°	759.65	1.991	-4.382	0.92	0.18	4.81' (57.72")	294.40
780	0.10°	199.83°	779.64	1.912	-4.353	0.59	3.39	4.75' (57.00")	293.70
800	0.75°	207.36°	799.63	1.779	-4.419	0.95	0.54	4.76' (57.12'')	291.90
820	0.39°	206.77°	819.62	1.602	-4.510	0.14	0.05	4.79' (57.48'')	289.60
840	0.68°	170.59°	839.61	1.424	-4.521	0.37	2.54	4.74' (56.88'')	287.50
860	0.71°	233.29°	859.60	1.233	-4.601	0.50	4.25	4.76' (57.12")	285.00
880	0.79°	230.87°	879.59	1.072	-4.807	0.54	0.17	4.93' (59.16")	282.60
900	1.07°	225.43°	899.58	0.854	-5.047	0.50	0.39	5.12' (61.44'')	279.60
920	0.50°	184.33°	919.57	0.636	-5.187	0.62	2.87	5.23' (62.76")	277.00
940	0.99°	265.37°	939.56	0.535	-5.366	0.13	5.31	5.39' (64.68")	275.70
960	0.95°	196.87°	959.55	0.362	-5.586	0.20	4.60	5.60' (67.20")	273.70
980	1.26°	230.81°	979.54	0.064	-5.805	0.99	2.39	5.80' (69.60")	270.60
1,000	0.35°	195.78°	999.54	-0.134	-5.992	0.91	2.46	5.99' (71.88")	268.70
1,020	1.71°	217.75°	1,019.53	-0.429	-6.191	0.98	1.56	6.21' (74.52")	266.00
1,040	0.59°	233.37°	1,039.52	-0.726	-6.456	0.37	1.11	6.50' (78.00")	263.60

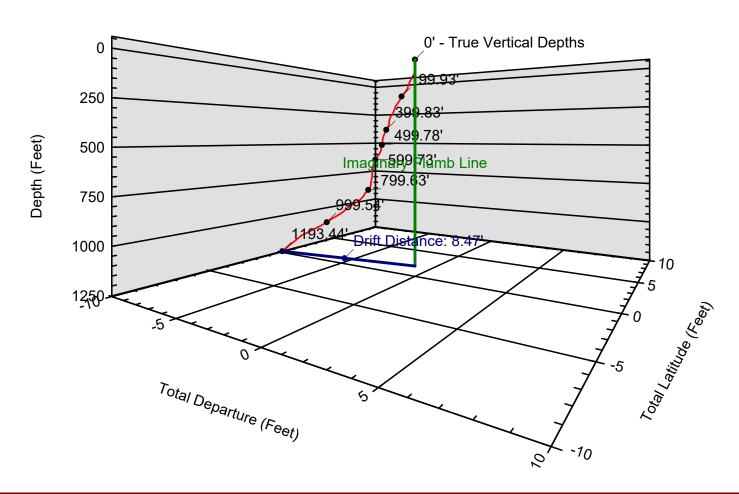
Page No. 2 True Vertical Depth: 1193.44' Final Drift Distance: 8.47' (101.64") Final Drift Bearing: 260.70°


WELLBORE DRIFT INTERPRETATION

Southwest Exploration Services, LLC (480) 926-4558

M57R-O

M	EASURED DAT	ГА			DA	TA COMPUTA	TIONS		
DEPTHS, feet	INCLINATIONS, degrees	AZIMUTHS, degrees	TVD, feet	T. LATITUDE, feet	T. LONGITUDE, feet	DOGLEG SEV., degrees per 20 Feet	DOGLEG SEV., degrees per 100 feet	DRIFT DIST., feet	DRIFT BRG. degrees
1,060	1.30°	252.54°	1,059.51	-0.856	-6.755	0.15	1.36	6.81' (81.72'')	262.80
1,080	0.93°	234.92°	1,079.50	-1.017	-7.104	0.88	1.25	7.18' (86.16'')	261.90
1,100	0.37°	231.60°	1,099.49	-1.150	-7.287	0.01	0.24	7.38' (88.56'')	261.00
1,120	0.85°	229.82°	1,119.48	-1.286	-7.451	0.05	0.13	7.56' (90.72'')	260.20
1,140	0.61°	269.84°	1,139.47	-1.382	-7.671	0.95	2.80	7.79' (93.48'')	259.80
1,160	0.79°	268.85°	1,159.46	-1.385	-7.915	0.44	0.07	8.04' (96.48'')	260.10
1,180	0.40°	248.32°	1,179.45	-1.414	-8.118	0.72	1.46	8.24' (98.88'')	260.10
1,194	1.67°	288.15°	1,193.44	-1.369	-8.357	1.00	3.98	8.47' (101.64'')	260.70

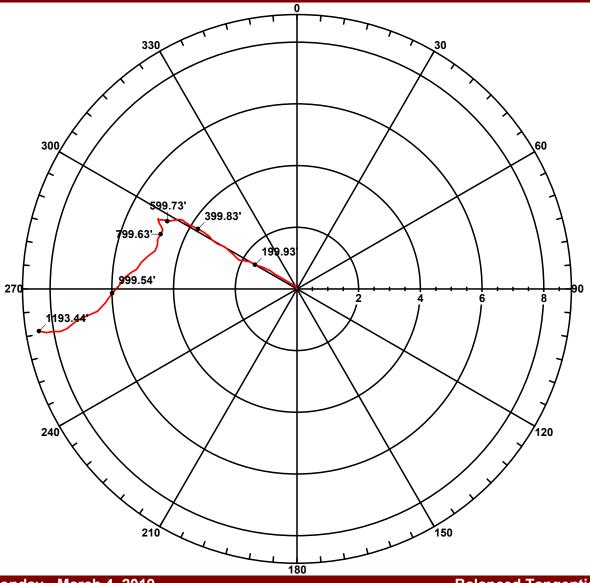

Page No. 3 True Vertical Depth: 1193.44' Final Drift Distance: 8.47' (101.64") Final Drift Bearing: 260.70°

3D PROJECTION VIEW - M57R-O

FLORENCE COPPER

212.0

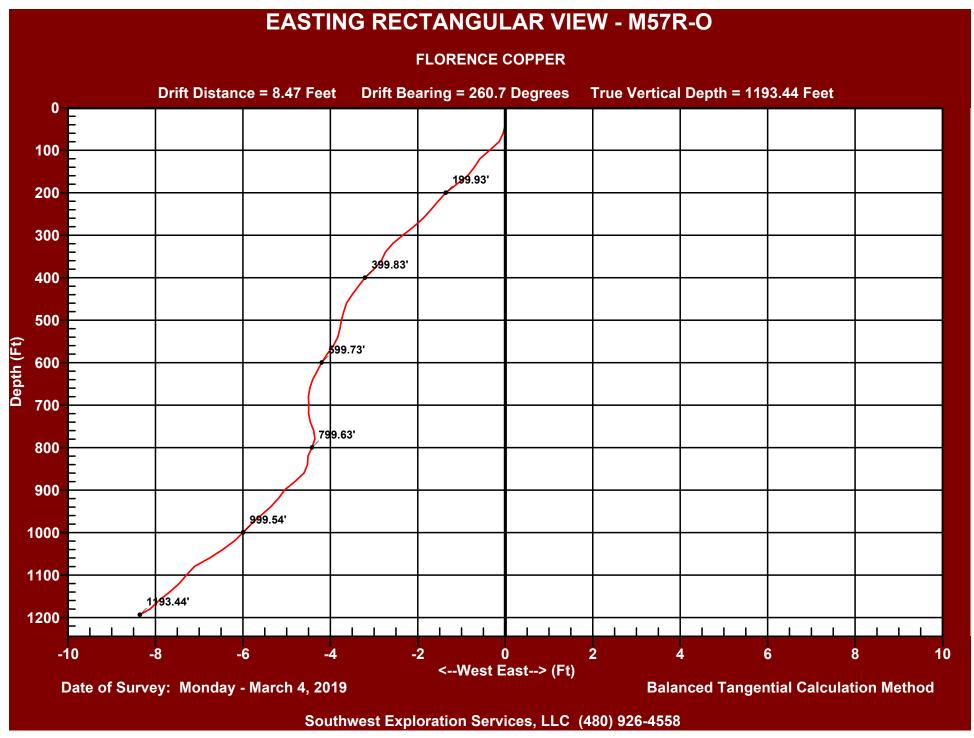
Date of Survey: Monday - March 4, 2019


Balanced Tangential Calculation Method

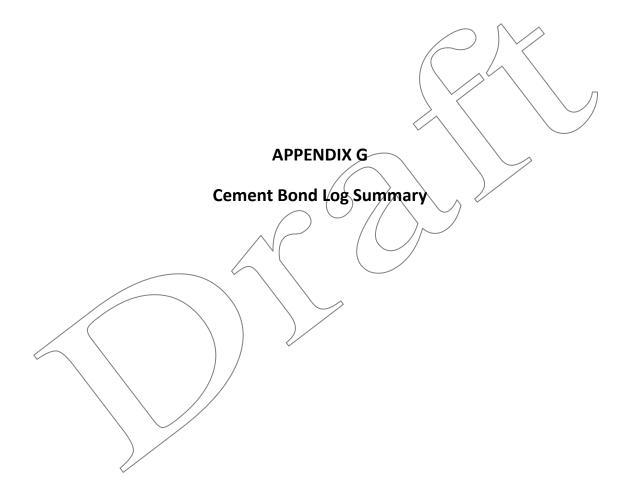
Southwest Exploration Services, LLC (480) 926-4558

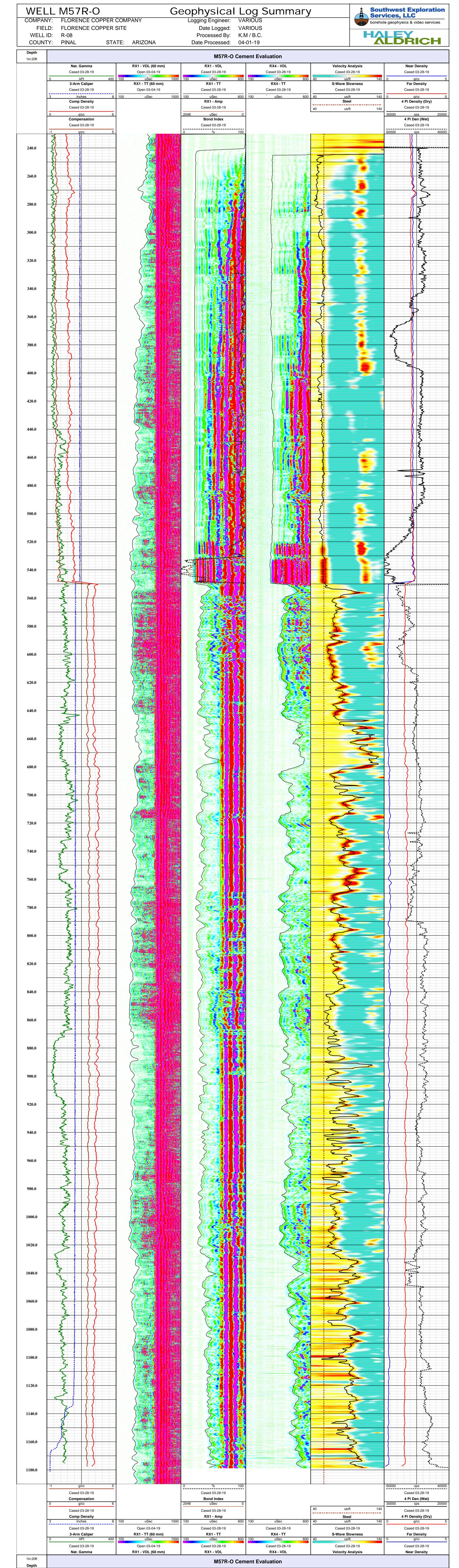
POLAR VIEW - M57R-O

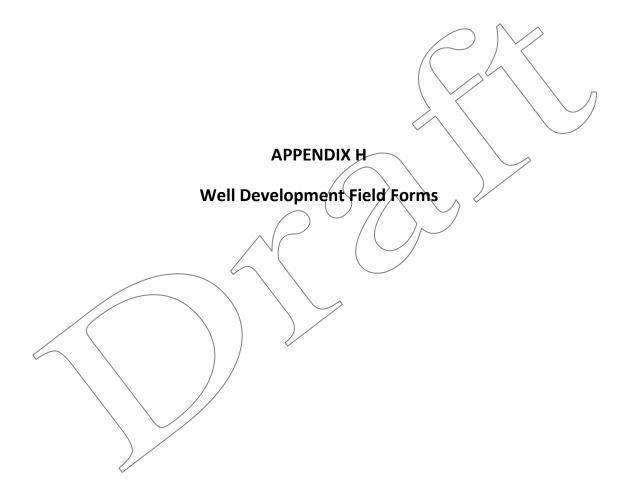
FLORENCE COPPER


Drift Distance = 8.47 Feet Drift Bearing = 260.7 Degrees True Vertical Depth = 1193.44 Feet

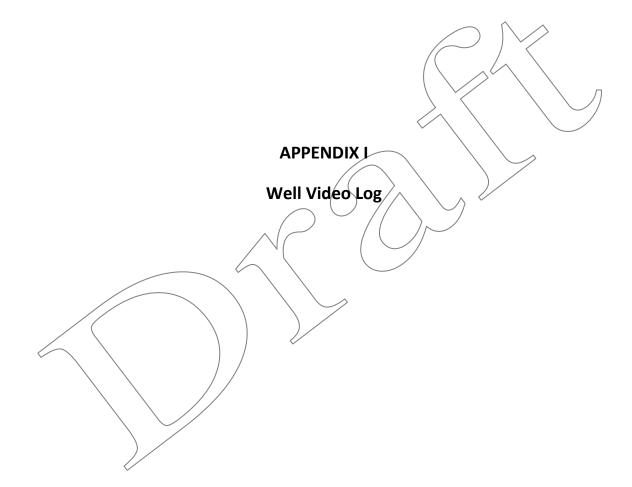
Date of Survey: Monday - March 4, 2019


Balanced Tangential Calculation Method


Southwest Exploration Services, LLC (480) 926-4558



Page	of	1


DEVELOPMENT FIELD DATA LOG

Project Name: FC I	Project No.: 129687 - 612
Well No .: M57-0-R	Date: 3-14-19 /3-15-19
Location: FLLONENCE, AZ	Measuring Point:
Total Depth of Well (ft bis): 1700	Screen Interval (ft bis): 550 - 790
Pump Type/Setting (ft bls): 1000	Activity: DELLELOPMENT
How Q Measured: BULLET STOCKATULY	H&A Personnel: C. (2/UST)

Time	Discharge (gpm)	Pumping Water Level (ft)	Specific Capacity (gpm/ft)	Sand Content (ppm)	pН	Sp. Cond. (µmhos/cm)	Temp. °C	Turbidity NTU	Comments
<u>08∞</u>		Sun	on	6		000	Ct.	365	~ 15 GRM
1925	~15	-NA	NA	NA	7.81	1325	26.7	-	100
1935	~15				7.79	1324	76.1	_	
	~15				7.74	1330	26.2	_	
1955	~15	_		_	7.81	1322	26.4	-	
-24	0.70	5 NO2.	00	Ru		2.460		0	. " -
~0	9:00	Punp		JED	υρ - Μ	OVED To	UP -	5 ft	oo AFBGS
15:35	~20				2500				12 (3.7
SYF	-20					125C	25.9	30.0	
1555	~70				7.76	1257	25.8	30.5	
1600	R	NP OF			7.75	1541	26.0	32.3	
1630	Q.		, N	OVE	Pu	up	S	0	100 ft
4.	~76	up on	7	2		200	PM	(40	in f (B(+s)
1700	~20				7.84	1253	26.3	450	111003)
1710	~ 20			_	7.88	1254	26.4	430	
1725	~20				7.85	1350	26.1	360	
	~20				7.83	1747	25.7	284	
MOG	EN	0			18.	1251	25.8	204	
100	FN	0 1	NO S	PEUFC	o pur	NT.	1900	aN	3-15-19
								1	
				4			-		
Comment									
Somment	o								
-									

C \Users\cprice\Documents\Book I

VIDEO SURVEY REPORT

Page 1

Client:	Florence Coppe	er				Survey Date:	April 1, 201	9	
Address:	1575 W Hunt H	wy				Invoice:		Run:	
City:	Florence		State: A	Z Zip:	85132	Well Name:	M57R-O		
Requested By:	lan Ream			P.O.:		Well Owner:	Florence Copper	r	
Сору То:				Came	ra: Aries BT9600	O Color Camei	ra		
Reason For Su	ırvey: General Sı	ırvey				Zero Datum:	Top Of Casing		
_ocation:						-			
ield:	Florence Copper						Depth: 1131 ft.	Vehicle:	290
County: Pinal		Cou	ntry:			Type Perfs:	Horizontal Slots		
Perf Intervals:						_			
1st Csg O.D.:	5 in. Csg We	ight: Fr	om: 0 ft.	To: 552 1	t. 2nd Csg O.D.:	5 in. Cs	sg Weight:	From: 552 ft.	To: 1131 ft
.D Reference:	Measured	Casing Bui	ldup: None			S.W.L.: 243	ft. P.W.L.:	Pump De	pth:
Operator:		Latitude:		Longitude.	:	Section:	Range:	Township	:
Other Informat	ion:								

WELLBORE SNAPSHOTS	DEPTHS (SideScan-Feet)	WELLBORE / CASING INFORMATION
	0.0 Ft.	Zeroed At SideScan Lens
0' (See Other Side) 170' (See Other Side)	170.1 Ft.	Downview at Steel Casing
PH-RI-19 SU ENFLORMEN FLOSSICE - IMPRES FLOSSICE - IMPRES FLOSSICE - IMPRES	243.0 Ft.	Static Water Level (SWL)
	439.1 Ft.	Visibility, Poor
243' (See Other Side) 439' (See Other Side)	553.0 Ft.	Perforations, Enlarged
	600.0 Ft.	Perforations, Enlarged
965 EET 6455 LLT	700.0 Ft.	Perforations, Enlarged
553' (See Other Side) 600' (See Other Side)	800.0 Ft.	Perforations, Enlarged
	900.0 Ft.	Perforations, Enlarged
sar for	1,000.1 Ft.	Perforations, Enlarged
	1,100.0 Ft.	Visibility, Poor
700' (See Other Side) 800' (See Other Side)	1,131.1 Ft.	Fill, End of Survey
THE SECOND SECON		
900' (See Other Side) 1000' (See Other Side)		
THE ST STATE OF THE STATE OF TH		
1100' (See Other Side) 1131' (See Other Side)		
1100 (See Striet Side)		
1131, Q2,		
-		
Notes:		Page 1

WELLBORE SNAPSHOT(S)

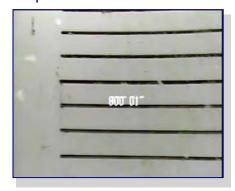
Depth: 0 Feet

Depth: 170 Feet

Depth: 243 Feet

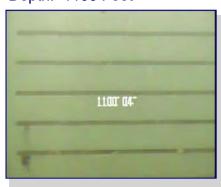
Depth: 439 Feet

Depth: 553 Feet


Depth: 600 Feet

Depth: 700 Feet


Depth: 800 Feet


Depth: 900 Feet

Depth: 1000 Feet

Depth: 1100 Feet

Depth: 1131 Feet

